Пример #1
0
def test_distance7(directory=None):
    directory = prepare_directory(directory)
    s = np.array([[0.0, 0.3, 0.5, 0.8, 1.0, 0.1, 0.0, 0.1],
                  [0.0, 0.2, 0.3, 0.7, 1.1, 0.0, 0.1, 0.0],
                  [0.1, 0.0, 1.0, 1.0, 1.0, 0.9, 0.0, 0.0],
                  [0.0, 0.0, 1.1, 0.9, 1.0, 1.0, 0.0, 0.0],
                  [0.0, 0.1, 1.1, 1.0, 0.9, 0.9, 0.0, 0.0],
                  [0.0, 0.1, 1.0, 1.1, 0.9, 1.0, 0.0, 0.1],
                  [0.0, 0.1, 0.4, 0.3, 0.2, 0.3, 0.0, 0.0],
                  [0.1, 0.0, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1]])
    l = np.array([1, 1, 0, 0, 0, 0, 0, 0])
    prototypeidx = 0

    if directory:
        plot_series(s, l, prototypeidx)

    ml_values, cl_values, clf, imp = dtww.series_to_dt(
        s,
        l,
        prototypeidx,
        window=0,
        min_ig=0.01,
        savefig=str(directory / "dts.dot"),
        warping_paths_fnc=dtww.warping_paths)
    # logger.debug(f"ml_values = {dict(ml_values)}")
    # logger.debug(f"cl_values = {dict(cl_values)}")
    weights = dtww.compute_weights_from_mlclvalues(s[prototypeidx],
                                                   ml_values,
                                                   cl_values,
                                                   only_max=False,
                                                   strict_cl=True)
    if directory:
        plot_margins(s[prototypeidx], weights, clf, imp)
Пример #2
0
def test_distance6(directory=None):
    directory = prepare_directory(directory)
    s = np.loadtxt(Path(__file__).parent / "rsrc" / "series_0.csv",
                   delimiter=',')
    l = np.loadtxt(Path(__file__).parent / "rsrc" / "labels_0.csv",
                   delimiter=',')

    if directory:
        plot_series(s, l)

    prototypeidx = 3
    labels = np.zeros(l.shape)
    labels[l == l[prototypeidx]] = 1
    ml_values, cl_values, clf = dtww.series_to_dt(s,
                                                  labels,
                                                  prototypeidx,
                                                  window=0,
                                                  min_ig=0.1,
                                                  savefig=str(directory /
                                                              "dts.dot"))
    logger.debug(f"ml_values = {dict(ml_values)}")
    logger.debug(f"cl_values = {dict(cl_values)}")
    weights = dtww.compute_weights_from_mlclvalues(s[prototypeidx],
                                                   ml_values,
                                                   cl_values,
                                                   only_max=False,
                                                   strict_cl=True)
    if directory:
        plot_margins(s[prototypeidx], weights, clf, prototypeidx)
Пример #3
0
def test_distance4(directory=None):
    directory = prepare_directory(directory)
    s = np.array([
        [0., 0, 1, 2, 1, 0, 1.3, 0, 0],  # 0
        [0., 1, 2, 0, 0, 0, 0, 0, 0],  # 1
        [1., 2, 0, 0, 0, 0, 0, 1, 1],  # 2
        [0., 0, 1, 2, 1, 0, 1, 0, 0],  # 3
        [0., 1, 2, 0, 0, 0, 0, 0, 0],  # 4
        [1., 2, 0, 0, 0, 0, 0, 1, 1],  # 5
        [1., 2, 0, 0, 1, 0, 0, 1, 1],  # 6
        [1., 2, 0.05, 0.01, 0.9, 0, 0, 1, 1]
    ])  # 7
    l = np.array([1, 0, 0, 1, 0, 0, 0, 0])

    if directory:
        plot_series(s, l)

    prototypeidx = 0
    ml_values, cl_values, clf = dtww.series_to_dt(s,
                                                  l,
                                                  prototypeidx,
                                                  window=2,
                                                  min_ig=0.1,
                                                  savefig=str(directory /
                                                              "dts.dot"))
    logger.debug(f"ml_values = {dict(ml_values)}")
    logger.debug(f"cl_values = {dict(cl_values)}")
    weights = dtww.compute_weights_from_mlclvalues(s[prototypeidx],
                                                   ml_values,
                                                   cl_values,
                                                   only_max=False,
                                                   strict_cl=True)
    if directory:
        plot_margins(s[prototypeidx], weights, clf)
Пример #4
0
def plot_margins(serie, weights, clfs, importances=None):
    global directory
    if directory is None:
        directory = prepare_directory()
    try:
        from sklearn import tree
    except ImportError:
        return
    feature_names = ["f{} ({}, {})".format(i // 2, i, '-' if (i % 2) == 0 else '+') for i in range(2 * len(serie))]
    out_str = io.StringIO()
    for clf in clfs:
        tree.export_graphviz(clf, out_file=out_str, feature_names=feature_names)
        print("\n\n", file=out_str)
    with open(str(directory / "tree.dot"), "w") as ofile:
        print(out_str.getvalue(), file=ofile)
    dtww.plot_margins(serie, weights, filename=str(directory / "margins.png"), importances=importances)
def test_distance1():
    directory = prepare_directory()

    s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
    s2 = np.array([0., 1, 2, 3, 1, 10, 1, 0, 2, 1, 0, 0, 0])
    d, paths = dtw.warping_paths(s1, s2)
    # print(d, "\n", paths)
    dtwvis.plot_warpingpaths(s1, s2, paths, filename=directory / "temp1.png")

    weights = np.full((len(s1), 8), np.inf)
    weights[:, 2:4] = 0.0
    weights[4:7, 2:4] = 10.0
    weights[:, 4:6] = 0.0
    weights[4:7, 4:6] = 10.0
    d, paths = dtww.warping_paths(s1, s2, weights)
    # print(d, "\n", paths)
    dtwvis.plot_warpingpaths(s1, s2, paths, filename=directory / "temp2.png")
def plot_series(s, l, idx=None):
    global directory
    if directory is None:
        directory = prepare_directory()
    import matplotlib.pyplot as plt
    colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
    fig1, ax1 = plt.subplots(nrows=len(s), ncols=1)
    fig2, ax2 = plt.subplots(nrows=1, ncols=1)
    for i, si in enumerate(s):
        if i == idx:
            color = colors[0]
        else:
            color = colors[int(1 + l[i])]
        ax1[i].plot(si, color=color)
        ax2.plot(si, color=color)
    fig1.savefig(str(directory / "series1.png"))
    fig2.savefig(str(directory / "series2.png"))
Пример #7
0
def test_distance3(directory=None):
    directory = prepare_directory(directory)
    s = np.array([[0., 0, 1, 2, 1, 0, 1.3, 0, 0], [0., 1, 2, 0, 0, 0, 0, 0,
                                                   0]])
    w = np.array([[np.inf, np.inf, 0., 0., 0., 0., np.inf, np.inf],
                  [np.inf, np.inf, 1.1, 1., 0., 0., np.inf, np.inf],
                  [np.inf, np.inf, 1.1, 1., 0., 0., np.inf, np.inf],
                  [np.inf, np.inf, 0., 0., 2., 2.2, np.inf, np.inf],
                  [np.inf, np.inf, 0., 0., 1., 1.1, np.inf, np.inf],
                  [np.inf, np.inf, 0., 0., 0., 0., np.inf, np.inf],
                  [np.inf, np.inf, 0., 0., 1.3, 1.43, np.inf, np.inf],
                  [np.inf, np.inf, 0., 0., 0., 0., np.inf, np.inf],
                  [np.inf, np.inf, 0., 0., 0., 0., np.inf, np.inf]])

    d, paths = dtww.warping_paths(s[0], s[1], w, window=0)
    path = dtw.best_path(paths)
    if directory:
        wp_fn = directory / "warping_paths.png"
        dtwvis.plot_warpingpaths(s[0], s[1], paths, path, filename=wp_fn)
Пример #8
0
def test_distance5(directory=None):
    directory = prepare_directory(directory)
    s = np.array([
        [0., 0, 0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # 0
        [0., 0, 2, 0, -2, 0, 2, 0, -2, 0, 2, 0, -2, 0, 0],  # 1
        [0., 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0]  # 2
    ])
    l = np.array([1, 1, 0])

    if directory:
        plot_series(s, l)

    prototypeidx = 0
    ml_values, cl_values, clf = dtww.series_to_dt(s, l, prototypeidx, window=4)
    logger.debug(f"ml_values = {dict(ml_values)}")
    logger.debug(f"cl_values = {dict(cl_values)}")
    weights = dtww.compute_weights_from_mlclvalues(s[prototypeidx],
                                                   ml_values,
                                                   cl_values,
                                                   only_max=False,
                                                   strict_cl=True)
    if directory:
        plot_margins(s[prototypeidx], weights, clf)