multinomially distributed integer 1-D array. """ # Check preconditions on arguments probs = num.array(probs) if len(probs.getshape()) != 1: raise ArgumentError, "probs must be 1 dimensional." # Compute shape of output if type(shape) == type(0): shape = [shape] final_shape = shape[:] final_shape.append(probs.getshape()[0] + 1) x = ranlib.multinomial(trials, probs.astype(num.Float32), num.multiply.reduce(shape)) # Change its shape to the desire one x.setshape(final_shape) return x def poisson(mean, shape=[]): """poisson(mean) or poisson(mean, [n, m, ...]) Returns array of poisson distributed random integers with specifed mean. """ return _build_random_array(ranlib.poisson, (mean, ), shape) from dtest import test if __name__ == '__main__': test()
def test(): import dtest return dtest.test()
In this case, output[i,j,...,:] is a 1-D array containing a multinomially distributed integer 1-D array. """ # Check preconditions on arguments probs = num.array(probs) if len(probs.getshape()) != 1: raise ArgumentError, "probs must be 1 dimensional." # Compute shape of output if type(shape) == type(0): shape = [shape] final_shape = shape[:] final_shape.append(probs.getshape()[0]+1) x = ranlib.multinomial(trials, probs.astype(num.Float32), num.multiply.reduce(shape)) # Change its shape to the desire one x.setshape(final_shape) return x def poisson(mean, shape=[]): """poisson(mean) or poisson(mean, [n, m, ...]) Returns array of poisson distributed random integers with specifed mean. """ return _build_random_array(ranlib.poisson, (mean,), shape) from dtest import test if __name__ == '__main__': test()