def task(self): listInstClean = dtree.load_csv_dataset(datadir("data.csv")) listInstNoisy = dtree.load_csv_dataset(datadir("noisy.dat")) cFold = 10 listSeries = [] for sLbl, fxn in [ ("Unpruned", dtree.yield_cv_folds), ("Pruned", dtree.yield_cv_folds_with_validation), ("Boosted", dtree.yield_boosted_folds), ("Stumps", self.build_depth_yield(1)), ("Depth-2", self.build_depth_yield(2)), ]: try: fxnScore = lambda listInst: dtree.cv_score(fxn(listInst, cFold)) listData = [fxnScore(listInstClean), fxnScore(listInstNoisy)] dictSeries = {"name": sLbl, "data": listData} except NotImplementedError: # we can forget about un-implemented functionality dictSeries = {"name": sLbl + " (not implemented)", "data": []} listSeries.append(dictSeries) return { "chart": {"defaultSeriesType": "column"}, "title": {"text": "Clean vs. Noisy Classification"}, "xAxis": {"categories": ["Clean", "Noisy"]}, "yAxis": {"title": {"text": "Fraction Correct"}, "min": 0.0, "max": 1.0}, "series": listSeries, }
def task(self): listInst = dtree.load_csv_dataset(datadir("data.csv")) br = dtree.boost(listInst) return {"chart": {"defaultSeriesType": "line"}, "title": {"text": "Boosting Classifier Weights"}, "xAxis": {"title": {"text": "Classifier Number"}}, "series": [{"name": "Classifier Weights", "data": br.listDblCferWeight}]}
def task(self): listInstClean = dtree.load_csv_dataset(datadir("data.csv")) listInstNoisy = dtree.load_csv_dataset(datadir("noisy.dat")) cFold = 10 listSeries = [] for sLbl, fxn in [("Unpruned", dtree.yield_cv_folds), ("Pruned", dtree.yield_cv_folds_with_validation), ("Boosted", dtree.yield_boosted_folds), ("Stumps", self.build_depth_yield(1)), ("Depth-2", self.build_depth_yield(2))]: try: fxnScore = lambda listInst: dtree.cv_score(fxn( listInst, cFold)) listData = [fxnScore(listInstClean), fxnScore(listInstNoisy)] dictSeries = {"name": sLbl, "data": listData} except NotImplementedError: # we can forget about un-implemented functionality dictSeries = {"name": sLbl + " (not implemented)", "data": []} listSeries.append(dictSeries) return { "chart": { "defaultSeriesType": "column" }, "title": { "text": "Clean vs. Noisy Classification" }, "xAxis": { "categories": ["Clean", "Noisy"] }, "yAxis": { "title": { "text": "Fraction Correct" }, "min": 0.0, "max": 1.0 }, "series": listSeries }
def task(self): listInst = dtree.load_csv_dataset(datadir("data.csv")) br = dtree.boost(listInst) return { "chart": { "defaultSeriesType": "line" }, "title": { "text": "Boosting Classifier Weights" }, "xAxis": { "title": { "text": "Classifier Number" } }, "series": [{ "name": "Classifier Weights", "data": br.listDblCferWeight }] }
def get_noisy_insts(): return dtree.load_csv_dataset(datadir("noisy.dat"))
def get_clean_insts(): return dtree.load_csv_dataset(datadir("data.csv"))
def task(self): listInst = dtree.load_csv_dataset(datadir("data.csv")) dt = dtree.build_tree(listInst, cMaxLevel=1) return serialize_tree(dt)
def task(self): listInst = dtree.load_csv_dataset(datadir("data.csv")) dt = dtree.build_tree(listInst[:-10]) dtree.prune_tree(dt, listInst[-10:]) return serialize_tree(dt)