def test_sections_property():
    ds = DataStore({
        'st':    (['x', 'time'], np.ones((5, 5))),
        'ast':   (['x', 'time'], np.ones((5, 5))),
        'probe1Temperature':  (['time'], range(5)),
        'probe2Temperature':  (['time'], range(5))
        },
        coords={
            'x':    range(5),
            'time': range(5)})

    sections1 = {
        'probe1Temperature': [slice(7.5, 17.), slice(70., 80.)],  # cold bath
        'probe2Temperature': [slice(24., 34.), slice(85., 95.)],  # warm bath
        }
    sections2 = {
        'probe1Temperature': [slice(0., 17.), slice(70., 80.)],  # cold bath
        'probe2Temperature': [slice(24., 34.), slice(85., 95.)],  # warm bath
        }
    ds.sections = sections1

    assert isinstance(ds._sections, str)

    assert ds.sections == sections1
    assert ds.sections != sections2

    # delete property
    del ds.sections
    assert ds.sections is None

    pass
def test_io_sections_property():
    ds = DataStore({
        'st':    (['x', 'time'], np.ones((5, 5))),
        'ast':   (['x', 'time'], np.ones((5, 5))),
        'probe1Temperature':  (['time'], range(5)),
        'probe2Temperature':  (['time'], range(5))
        },
        coords={
            'x':    range(5),
            'time': range(5)})

    sections = {
        'probe1Temperature': [slice(7.5, 17.), slice(70., 80.)],  # cold bath
        'probe2Temperature': [slice(24., 34.), slice(85., 95.)],  # warm bath
        }

    ds.sections = sections
    with tempfile.NamedTemporaryFile() as tmp:
        ds.to_netcdf(path=tmp.name)

        ds2 = open_datastore(tmp.name)

        assert ds.sections == ds2.sections

    pass
Пример #3
0
def test_io_sections_property():
    ds = DataStore(
        {
            'st': (['x', 'time'], np.ones((100, 5))),
            'ast': (['x', 'time'], np.ones((100, 5))),
            'probe1Temperature': (['time'], range(5)),
            'probe2Temperature': (['time'], range(5))
        },
        coords={
            'x': ('x', range(100), {
                'units': 'm'
            }),
            'time': range(5)
        })

    sections = {
        'probe1Temperature': [slice(7.5, 17.),
                              slice(70., 80.)],  # cold bath
        'probe2Temperature': [slice(24., 34.),
                              slice(85., 95.)],  # warm bath
    }
    ds['x'].attrs['units'] = 'm'

    ds.sections = sections

    # Create a temporary file to write data to.
    # 'with' method is used so the file is closed by tempfile
    # and free to be overwritten.
    with tempfile.NamedTemporaryFile('w') as tmp:
        temppath = tmp.name

    # Write the datastore to the temp file
    ds.to_netcdf(path=temppath)

    try:
        ds2 = open_datastore(temppath)
    except ValueError as e:
        if str(e) != 'cannot guess the engine, try passing one explicitly':
            raise
        else:
            warnings.warn('Could not guess engine, defaulted to netcdf4')
            ds2 = open_datastore(temppath, engine='netcdf4')

    assert ds.sections == ds2.sections

    # Close the datastore so the temp file can be removed
    ds2.close()
    ds2 = None

    # Remove the temp file once the test is done
    if os.path.exists(temppath):
        os.remove(temppath)

    pass
def test_io_sections_property():
    ds = DataStore(
        {
            'st': (['x', 'time'], np.ones((100, 5))),
            'ast': (['x', 'time'], np.ones((100, 5))),
            'probe1Temperature': (['time'], range(5)),
            'probe2Temperature': (['time'], range(5))
        },
        coords={
            'x': ('x', range(100), {
                'units': 'm'
            }),
            'time': range(5)
        })

    sections = {
        'probe1Temperature': [slice(7.5, 17.),
                              slice(70., 80.)],  # cold bath
        'probe2Temperature': [slice(24., 34.),
                              slice(85., 95.)],  # warm bath
    }
    ds['x'].attrs['units'] = 'm'

    ds.sections = sections

    # Create a temporary file to write data to.
    # 'with' method is used so the file is closed by tempfile
    # and free to be overwritten.
    with tempfile.NamedTemporaryFile('w') as tmp:
        temppath = tmp.name

    # Write the datastore to the temp file
    ds.to_netcdf(path=temppath)

    ds2 = open_datastore(temppath)

    assert ds.sections == ds2.sections

    # Close the datastore so the temp file can be removed
    ds2.close()
    ds2 = None

    # Remove the temp file once the test is done
    if os.path.exists(temppath):
        os.remove(temppath)

    pass
Пример #5
0
def test_variance_of_stokes_synthetic():
    """
    Produces a synthetic Stokes measurement with a known noise distribution. Check if same
    variance is obtained.

    Returns
    -------

    """
    yvar = 5.

    nx = 50
    x = np.linspace(0., 20., nx)

    nt = 1000
    beta = np.linspace(3000, 4000, nt)[None]

    y = beta * np.exp(-0.001 * x[:, None])

    y += stats.norm.rvs(size=y.size, scale=yvar**0.5).reshape(y.shape)

    ds = DataStore(
        {
            'test_ST': (['x', 'time'], y),
            'probe1Temperature': (['time'], range(nt)),
            'userAcquisitionTimeFW': (['time'], np.ones(nt)),
        },
        coords={
            'x': x,
            'time': range(nt)
        },
        attrs={'customData:isDoubleEnded': '0'})

    sections = {
        'probe1Temperature': [
            slice(0., 20.),
        ]
    }
    test_ST_var, _ = ds.variance_stokes(st_label='test_ST',
                                        sections=sections,
                                        suppress_info=True)

    np.testing.assert_almost_equal(test_ST_var, yvar, decimal=1)
Пример #6
0
def shift_double_ended(ds, i_shift):
    """
    The cable length was initially configured during the DTS measurement. For double ended
    measurements it is important to enter the correct length so that the forward channel and the
    backward channel are aligned.

    This function can be used to shift the backward channel so that the forward channel and the
    backward channel are aligned. The backward channel is shifted per index
    along the x dimension.

    The DataStore object that is returned only has values for the backscatter that are measured
    for both the forward channel and the backward channel in the shifted object

    There is no interpolation, as this would alter the accuracy.


    Parameters
    ----------
    ds : DataSore object
        DataStore object that needs to be shifted
    i_shift : int
        if i_shift < 0, the cable was configured to be too long and there is too much data
        recorded. If i_shift > 0, the cable was configured to be too short and part of the cable is
        not measured.

    Returns
    -------
    ds2 : DataStore oobject
        With a shifted x-axis
    """
    from dtscalibration import DataStore

    assert isinstance(i_shift, (int, np.integer))

    nx = ds.x.size
    nx2 = nx - i_shift
    if i_shift < 0:
        # The cable was configured to be too long.
        # There is too much data recorded.
        st = ds.ST.data[:i_shift]
        ast = ds.AST.data[:i_shift]
        rst = ds['REV-ST'].data[-i_shift:]
        rast = ds['REV-AST'].data[-i_shift:]
        x2 = ds.x.data[:i_shift]
        # TMP2 = ds.TMP.data[:i_shift]

    else:
        # The cable was configured to be too short.
        # Part of the cable is not measured.
        st = ds.ST.data[i_shift:]
        ast = ds.AST.data[i_shift:]
        rst = ds['REV-ST'].data[:nx2]
        rast = ds['REV-AST'].data[:nx2]
        x2 = ds.x.data[i_shift:]
        # TMP2 = ds.TMP.data[i_shift:]

    d2_coords = dict(ds.coords)
    d2_coords['x'] = (('x', ), x2, ds.x.attrs)

    d2_data = dict(ds.data_vars)
    for k in ds.data_vars:
        if 'x' in ds[k].dims and k in d2_data:
            del d2_data[k]

    new_data = (('ST', st), ('AST', ast), ('REV-ST', rst), ('REV-AST', rast))

    for k, v in new_data:
        d2_data[k] = (ds[k].dims, v, ds[k].attrs)

    not_included = [k for k in ds.data_vars if k not in d2_data]
    if not_included:
        print('I dont know what to do with the following data', not_included)

    return DataStore(data_vars=d2_data, coords=d2_coords, attrs=ds.attrs)
def test_has_sectionattr_upon_creation():
    ds = DataStore()
    assert hasattr(ds, '_sections')
    assert isinstance(ds._sections, str)
    pass
def test_repr():
    ds = DataStore()
    assert str(ds).find('dtscalibration') != -1
    assert str(ds).find('Sections') != -1
    pass
def test_empty_construction():
    ds = DataStore()  # noqa: F841
    pass
Пример #10
0
def test_repr():
    ds = DataStore()
    assert ds.__repr__().find('dtscalibration')
    assert ds.__repr__().find('Sections')
    pass
Пример #11
0
def test_empty_construction():
    ds = DataStore()
    assert ds._initialized, 'Empty obj in not initialized'
    pass
Пример #12
0
def test_double_ended_variance_estimate_synthetic():
    import dask.array as da
    from dtscalibration import DataStore
    import numpy as np
    from scipy import stats

    np.random.seed(0)
    state = da.random.RandomState(0)
    # from dtscalibration.calibrate_utils import

    stokes_m_var = 40.
    cable_len = 100.
    nt = 500
    time = np.arange(nt)
    x = np.linspace(0., cable_len, 100)
    ts_cold = np.ones(nt) * 4.
    ts_warm = np.ones(nt) * 20.

    C_p = 15246
    C_m = 2400.
    dalpha_r = 0.0005284
    dalpha_m = 0.0004961
    dalpha_p = 0.0005607
    gamma = 482.6
    cold_mask = x < 0.5 * cable_len
    warm_mask = np.invert(cold_mask)  # == False
    temp_real = np.ones((len(x), nt))
    temp_real[cold_mask] *= ts_cold + 273.15
    temp_real[warm_mask] *= ts_warm + 273.15

    st = C_p * np.exp(-dalpha_r * x[:, None]) * np.exp(
        -dalpha_p * x[:, None]) * np.exp(
            -gamma / temp_real) / (1 - np.exp(-gamma / temp_real))
    ast = C_m * np.exp(-dalpha_r * x[:, None]) * np.exp(
        -dalpha_m * x[:, None]) / (1 - np.exp(-gamma / temp_real))
    rst = C_p * np.exp(-dalpha_r * (-x[:, None] + 100)) * np.exp(
        -dalpha_p * (-x[:, None] + 100)) * np.exp(
            -gamma / temp_real) / (1 - np.exp(-gamma / temp_real))
    rast = C_m * np.exp(-dalpha_r * (-x[:, None] + 100)) * np.exp(
        -dalpha_m * (-x[:, None] + 100)) / (1 - np.exp(-gamma / temp_real))

    st_m = st + stats.norm.rvs(size=st.shape, scale=stokes_m_var**0.5)
    ast_m = ast + stats.norm.rvs(size=ast.shape, scale=1.1 * stokes_m_var**0.5)
    rst_m = rst + stats.norm.rvs(size=rst.shape, scale=0.9 * stokes_m_var**0.5)
    rast_m = rast + stats.norm.rvs(size=rast.shape,
                                   scale=0.8 * stokes_m_var**0.5)

    print('alphaint', cable_len * (dalpha_p - dalpha_m))
    print('alpha', dalpha_p - dalpha_m)
    print('C', np.log(C_p / C_m))
    print('x0', x.max())

    ds = DataStore(
        {
            'st': (['x', 'time'], st),
            'ast': (['x', 'time'], ast),
            'rst': (['x', 'time'], rst),
            'rast': (['x', 'time'], rast),
            'mst': (['x', 'time'], st_m),
            'mast': (['x', 'time'], ast_m),
            'mrst': (['x', 'time'], rst_m),
            'mrast': (['x', 'time'], rast_m),
            'userAcquisitionTimeFW': (['time'], np.ones(nt)),
            'userAcquisitionTimeBW': (['time'], np.ones(nt)),
            'cold': (['time'], ts_cold),
            'warm': (['time'], ts_warm)
        },
        coords={
            'x': x,
            'time': time
        },
        attrs={'customData:isDoubleEnded': '1'})

    sections = {
        'cold': [slice(0., 0.5 * cable_len)],
        'warm': [slice(0.5 * cable_len, cable_len)]
    }

    mst_var, _ = ds.variance_stokes(st_label='mst',
                                    sections=sections,
                                    suppress_info=True)
    mast_var, _ = ds.variance_stokes(st_label='mast',
                                     sections=sections,
                                     suppress_info=True)
    mrst_var, _ = ds.variance_stokes(st_label='mrst',
                                     sections=sections,
                                     suppress_info=True)
    mrast_var, _ = ds.variance_stokes(st_label='mrast',
                                      sections=sections,
                                      suppress_info=True)

    st_label = 'mst'
    ast_label = 'mast'
    rst_label = 'mrst'
    rast_label = 'mrast'

    # MC variqnce
    ds.calibration_double_ended(
        sections=sections,
        st_label=st_label,
        ast_label=ast_label,
        rst_label=rst_label,
        rast_label=rast_label,
        st_var=mst_var,
        ast_var=mast_var,
        rst_var=mrst_var,
        rast_var=mrast_var,
        method='wls',
        # conf_ints=[0.00135, 0.025, 0.15865, 0.5, 0.84135, 0.975, 0.99865],
        conf_ints=[0.025, 0.5, 0.975],
        ci_avg_time_flag=0,
        store_tempvar='_var',
        conf_ints_size=500,
        solver='sparse',
        da_random_state=state)

    # Calibrated variance
    stdsf1 = ds.ufunc_per_section(label='TMPF',
                                  func=np.std,
                                  temp_err=True,
                                  calc_per='stretch')
    stdsb1 = ds.ufunc_per_section(label='TMPB',
                                  func=np.std,
                                  temp_err=True,
                                  calc_per='stretch')

    # Use a single timestep to better check if the parameter uncertainties propagate
    ds1 = ds.isel(time=1)
    # Estimated VAR
    stdsf2 = ds1.ufunc_per_section(label='TMPF_MC_var',
                                   func=np.mean,
                                   temp_err=False,
                                   calc_per='stretch')
    stdsb2 = ds1.ufunc_per_section(label='TMPB_MC_var',
                                   func=np.mean,
                                   temp_err=False,
                                   calc_per='stretch')

    for (_, v1), (_, v2) in zip(stdsf1.items(), stdsf2.items()):
        for v1i, v2i in zip(v1, v2):
            print('Real VAR: ', v1i**2, 'Estimated VAR: ', v2i)
            np.testing.assert_almost_equal(v1i**2, v2i, decimal=2)

    for (_, v1), (_, v2) in zip(stdsb1.items(), stdsb2.items()):
        for v1i, v2i in zip(v1, v2):
            print('Real VAR: ', v1i**2, 'Estimated VAR: ', v2i)
            np.testing.assert_almost_equal(v1i**2, v2i, decimal=2)

    pass