Пример #1
0
    def test_point_vector_hadamard(self):
        l = 3
        V = PointVector([random_point() for i in range(l)])
        W = PointVector([random_point() for i in range(l)])
        X = V*W

        self.assertEqual(len(X),l)
        for i in range(l):
            self.assertEqual(X[i],V[i]+W[i])
Пример #2
0
    def test_point_vector_sub(self):
        l = 3
        V = PointVector([random_point() for i in range(l)])
        W = PointVector([random_point() for i in range(l)])
        X = V-W

        self.assertEqual(len(X),l)
        for i in range(l):
            self.assertEqual(X[i],V[i]-W[i])
Пример #3
0
    def __init__(self,G,H,U,a,b,tr):
        # Common data
        self.G = G
        self.H = H
        self.U = U
        self.done = False

        # Prover data
        self.a = a
        self.b = b

        # Verifier data (appended lists)
        self.L = PointVector([])
        self.R = PointVector([])

        # Transcript
        self.tr = tr
Пример #4
0
    def test_point_vector_slice(self):
        l = 3
        points = [random_point() for i in range(2*l)]
        V = PointVector(points)
        W = V[:l]

        self.assertEqual(len(W),l)
        self.assertEqual(W.points,points[:l])
Пример #5
0
    def test_point_vector_mul_scalar(self):
        l = 3
        V = PointVector([random_point() for i in range(l)])
        s = random_scalar()
        W = V*s

        self.assertEqual(len(W),l)
        for i in range(l):
            self.assertEqual(W[i],V[i]*s)
Пример #6
0
    def test_point_vector_mul_scalar_vector(self):
        l = 3
        V = PointVector([random_point() for i in range(l)])
        v = ScalarVector([random_scalar() for i in range(l)])
        W = V*v

        R = dumb25519.Z
        for i in range(l):
            R += V[i]*v[i]
        self.assertEqual(W,R)
Пример #7
0
    def test_point_vector_extend(self):
        l = 3
        points = [random_point() for i in range(2*l)]
        V = PointVector(points[:l])
        W = PointVector(points[l:])
        V.extend(W)

        T = PointVector(points)
        self.assertEqual(len(V),len(T))
        self.assertEqual(V.points,T.points)
Пример #8
0
def prove(data,N):
    clear_cache()
    M = len(data)

    # curve points
    G = dumb25519.G
    H = hash_to_point('pybullet H')
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(M*N)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(M*N)])

    # set amount commitments
    V = PointVector([])
    aL = ScalarVector([])
    for v,gamma in data:
        V.append((H*v + G*gamma)*inv8)
        mash(V[-1])
        aL.extend(scalar_to_bits(v,N))

    # set bit arrays
    aR = ScalarVector([])
    for bit in aL.scalars:
        aR.append(bit-Scalar(1))

    alpha = random_scalar()
    A = (Gi*aL + Hi*aR + G*alpha)*inv8

    sL = ScalarVector([random_scalar()]*(M*N))
    sR = ScalarVector([random_scalar()]*(M*N))
    rho = random_scalar()
    S = (Gi*sL + Hi*sR + G*rho)*inv8

    # get challenges
    mash(A)
    mash(S)
    y = cache
    y_inv = y.invert()
    mash('')
    z = cache

    # polynomial coefficients
    l0 = aL - ScalarVector([z]*(M*N))
    l1 = sL

    # ugly sum
    zeros_twos = []
    for i in range (M*N):
        zeros_twos.append(Scalar(0))
        for j in range(1,M+1):
            temp = Scalar(0)
            if i >= (j-1)*N and i < j*N:
                temp = Scalar(2)**(i-(j-1)*N)
            zeros_twos[-1] += temp*(z**(1+j))
    
    # more polynomial coefficients
    r0 = aR + ScalarVector([z]*(M*N))
    r0 = r0*exp_scalar(y,M*N)
    r0 += ScalarVector(zeros_twos)
    r1 = exp_scalar(y,M*N)*sR

    # build the polynomials
    t0 = l0**r0
    t1 = l0**r1 + l1**r0
    t2 = l1**r1

    tau1 = random_scalar()
    tau2 = random_scalar()
    T1 = (H*t1 + G*tau1)*inv8
    T2 = (H*t2 + G*tau2)*inv8

    mash(T1)
    mash(T2)
    x = cache # challenge

    taux = tau1*x + tau2*(x**2)
    for j in range(1,M+1):
        gamma = data[j-1][1]
        taux += z**(1+j)*gamma
    mu = x*rho+alpha
    
    l = l0 + l1*x
    r = r0 + r1*x
    t = l**r

    mash(taux)
    mash(mu)
    mash(t)

    x_ip = cache # challenge
    L = PointVector([])
    R = PointVector([])
   
    # initial inner product inputs
    data_ip = [Gi,PointVector([Hi[i]*(y_inv**i) for i in range(len(Hi))]),H*x_ip,l,r,None,None]
    while True:
        data_ip = inner_product(data_ip)

        # we have reached the end of the recursion
        if len(data_ip) == 2:
            return [V,A,S,T1,T2,taux,mu,L,R,data_ip[0],data_ip[1],t]

        # we are not done yet
        L.append(data_ip[-2])
        R.append(data_ip[-1])
Пример #9
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof[7]) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    G = dumb25519.G
    H = hash_to_point('pybullet H')
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    z1 = Scalar(0)
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN
    scalars = ScalarVector([]) # for final check
    points = PointVector([]) # for final check

    # run through each proof
    for proof in proofs:
        clear_cache()

        V,A,S,T1,T2,taux,mu,L,R,a,b,t = proof

        # get size information
        M = 2**len(L)/N

        # weighting factors for batching
        weight_y = random_scalar()
        weight_z = random_scalar()
        if weight_y == Scalar(0) or weight_z == Scalar(0):
            raise ArithmeticError

        # reconstruct all challenges
        for v in V:
            mash(v)
        mash(A)
        mash(S)
        if cache == Scalar(0):
            raise ArithmeticError
        y = cache
        y_inv = y.invert()
        mash('')
        if cache == Scalar(0):
            raise ArithmeticError
        z = cache
        mash(T1)
        mash(T2)
        if cache == Scalar(0):
            raise ArithmeticError
        x = cache
        mash(taux)
        mash(mu)
        mash(t)
        if cache == Scalar(0):
            raise ArithmeticError
        x_ip = cache

        y0 += taux*weight_y
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*weight_y

        for j in range(M):
            scalars.append(z**(j+2)*weight_y)
            points.append(V[j]*Scalar(8))
        scalars.append(x*weight_y)
        points.append(T1*Scalar(8))
        scalars.append(x**2*weight_y)
        points.append(T2*Scalar(8))

        scalars.append(weight_z)
        points.append(A*Scalar(8))
        scalars.append(x*weight_z)
        points.append(S*Scalar(8))

        # inner product
        W = ScalarVector([])
        for i in range(len(L)):
            mash(L[i])
            mash(R[i])
            if cache == Scalar(0):
                raise ArithmeticError
            W.append(cache)
        W_inv = W.invert()

        for i in range(M*N):
            index = i
            g = a
            h = b*((y_inv)**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W_inv[J]
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W_inv[J]
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y_inv)**i)

            z4[i] += g*weight_z
            z5[i] += h*weight_z

        z1 += mu*weight_z

        for i in range(len(L)):
            scalars.append(W[i]**2*weight_z)
            points.append(L[i]*Scalar(8))
            scalars.append(W_inv[i]**2*weight_z)
            points.append(R[i]*Scalar(8))
        z3 += (t-a*b)*x_ip*weight_z
    
    # now check all proofs together
    scalars.append(-y0-z1)
    points.append(G)
    scalars.append(-y1+z3)
    points.append(H)
    for i in range(max_MN):
        scalars.append(-z4[i])
        points.append(Gi[i])
        scalars.append(-z5[i])
        points.append(Hi[i])

    if not dumb25519.multiexp(scalars,points) == Z:
        raise ArithmeticError('Bad z check!')

    return True
Пример #10
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof.L) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    z1 = Scalar(0)
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN
    scalars = ScalarVector([]) # for final check
    points = PointVector([]) # for final check

    # run through each proof
    for proof in proofs:
        tr = transcript.Transcript('Bulletproof')

        V = proof.V
        A = proof.A
        S = proof.S
        T1 = proof.T1
        T2 = proof.T2
        taux = proof.taux
        mu = proof.mu
        L = proof.L
        R = proof.R
        a = proof.a
        b = proof.b
        t = proof.t

        # get size information
        M = 2**len(L)/N

        # weighting factors for batching
        weight_y = random_scalar()
        weight_z = random_scalar()
        if weight_y == Scalar(0) or weight_z == Scalar(0):
            raise ArithmeticError

        # reconstruct challenges
        for v in V:
            tr.update(v)
        tr.update(A)
        tr.update(S)
        y = tr.challenge()
        if y == Scalar(0):
            raise ArithmeticError
        y_inv = y.invert()
        z = tr.challenge()
        if z == Scalar(0):
            raise ArithmeticError
        tr.update(T1)
        tr.update(T2)
        x = tr.challenge()
        if x == Scalar(0):
            raise ArithmeticError
        tr.update(taux)
        tr.update(mu)
        tr.update(t)
        x_ip = tr.challenge()
        if x_ip == Scalar(0):
            raise ArithmeticError

        y0 += taux*weight_y
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*weight_y

        for j in range(M):
            scalars.append(z**(j+2)*weight_y)
            points.append(V[j]*Scalar(8))
        scalars.append(x*weight_y)
        points.append(T1*Scalar(8))
        scalars.append(x**2*weight_y)
        points.append(T2*Scalar(8))

        scalars.append(weight_z)
        points.append(A*Scalar(8))
        scalars.append(x*weight_z)
        points.append(S*Scalar(8))

        # inner product
        W = ScalarVector([])
        for i in range(len(L)):
            tr.update(L[i])
            tr.update(R[i])
            W.append(tr.challenge())
            if W[i] == Scalar(0):
                raise ArithmeticError
        W_inv = W.invert()

        for i in range(M*N):
            index = i
            g = a
            h = b*((y_inv)**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W_inv[J]
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W_inv[J]
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y_inv)**i)

            z4[i] += g*weight_z
            z5[i] += h*weight_z

        z1 += mu*weight_z

        for i in range(len(L)):
            scalars.append(W[i]**2*weight_z)
            points.append(L[i]*Scalar(8))
            scalars.append(W_inv[i]**2*weight_z)
            points.append(R[i]*Scalar(8))
        z3 += (t-a*b)*x_ip*weight_z
    
    # now check all proofs together
    scalars.append(-y0-z1)
    points.append(Gc)
    scalars.append(-y1+z3)
    points.append(Hc)
    for i in range(max_MN):
        scalars.append(-z4[i])
        points.append(Gi[i])
        scalars.append(-z5[i])
        points.append(Hi[i])

    if not dumb25519.multiexp(scalars,points) == Z:
        raise ArithmeticError('Bad verification!')

    return True
Пример #11
0
def prove(data,N):
    tr = transcript.Transcript('Bulletproof')
    M = len(data)

    # curve points
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(M*N)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(M*N)])

    # set amount commitments
    V = PointVector([])
    aL = ScalarVector([])
    for v,gamma in data:
        V.append(com(v,gamma)*inv8)
        tr.update(V[-1])
        aL.extend(scalar_to_bits(v,N))

    # set bit arrays
    aR = ScalarVector([])
    for bit in aL.scalars:
        aR.append(bit-Scalar(1))

    alpha = random_scalar()
    A = (Gi**aL + Hi**aR + Gc*alpha)*inv8

    sL = ScalarVector([random_scalar()]*(M*N))
    sR = ScalarVector([random_scalar()]*(M*N))
    rho = random_scalar()
    S = (Gi**sL + Hi**sR + Gc*rho)*inv8

    # get challenges
    tr.update(A)
    tr.update(S)
    y = tr.challenge()
    z = tr.challenge()
    y_inv = y.invert()

    # polynomial coefficients
    l0 = aL - ScalarVector([z]*(M*N))
    l1 = sL

    # for polynomial coefficients
    zeros_twos = []
    z_cache = z**2
    for j in range(M):
        for i in range(N):
            zeros_twos.append(z_cache*2**i)
        z_cache *= z
    
    # more polynomial coefficients
    r0 = aR + ScalarVector([z]*(M*N))
    r0 = r0*exp_scalar(y,M*N)
    r0 += ScalarVector(zeros_twos)
    r1 = exp_scalar(y,M*N)*sR

    # build the polynomials
    t0 = l0**r0
    t1 = l0**r1 + l1**r0
    t2 = l1**r1

    tau1 = random_scalar()
    tau2 = random_scalar()
    T1 = com(t1,tau1)*inv8
    T2 = com(t2,tau2)*inv8

    tr.update(T1)
    tr.update(T2)
    x = tr.challenge()

    taux = tau1*x + tau2*(x**2)
    for j in range(1,M+1):
        gamma = data[j-1][1]
        taux += z**(1+j)*gamma
    mu = x*rho+alpha
    
    l = l0 + l1*x
    r = r0 + r1*x
    t = l**r

    tr.update(taux)
    tr.update(mu)
    tr.update(t)
    x_ip = tr.challenge()

    # initial inner product inputs
    data = InnerProductRound(Gi,PointVector([Hi[i]*(y_inv**i) for i in range(len(Hi))]),Hc*x_ip,l,r,tr)
    while True:
        inner_product(data)

        # we have reached the end of the recursion
        if data.done:
            return Bulletproof(V,A,S,T1,T2,taux,mu,data.L,data.R,data.a,data.b,t)
Пример #12
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof[7]) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    G = dumb25519.G
    H = dumb25519.H
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # verify that all points are in the correct subgroup
    for item in dumb25519.flatten(proofs):
        if not isinstance(item,Point):
            continue
        if not item*Scalar(dumb25519.l) == Z:
            raise ArithmeticError

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    Y2 = Z
    Y3 = Z
    Y4 = Z
    Z0 = Z
    z1 = Scalar(0)
    Z2 = Z
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN

    # run through each proof
    for proof in proofs:
        clear_cache()

        V,A,S,T1,T2,taux,mu,L,R,a,b,t = proof

        # get size information
        M = 2**len(L)/N

        # weighting factor for batching
        w = random_scalar()

        # reconstruct all challenges
        for v in V:
            mash(v)
        mash(A)
        mash(S)
        y = cache
        mash('')
        z = cache
        mash(T1)
        mash(T2)
        x = cache
        mash(taux)
        mash(mu)
        mash(t)
        x_ip = cache

        y0 += taux*w
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*w

        Temp = Z
        for j in range(M):
            Temp += V[j]*(z**(j+2)*Scalar(8))
        Y2 += Temp*w
        Y3 += T1*(x*w*Scalar(8))
        Y4 += T2*((x**2)*w*Scalar(8))

        Z0 += (A*Scalar(8)+S*(x*Scalar(8)))*w

        # inner product
        W = []
        for i in range(len(L)):
            mash(L[i])
            mash(R[i])
            W.append(cache)

        for i in range(M*N):
            index = i
            g = a
            h = b*((y.invert())**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W[J].invert()
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W[J].invert()
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y.invert())**i)

            z4[i] += g*w
            z5[i] += h*w

        z1 += mu*w

        Multiexp = []
        for i in range(len(L)):
            Multiexp.append([L[i],Scalar(8)*(W[i]**2)])
            Multiexp.append([R[i],Scalar(8)*(W[i].invert()**2)])
        Z2 += dumb25519.multiexp(Multiexp)*w
        z3 += (t-a*b)*x_ip*w
    
    # now check all proofs together
    if not G*y0 + H*y1 - Y2 - Y3 - Y4 == Z:
        raise ArithmeticError('Bad y check!')

    Multiexp = [[Z0,Scalar(1)],[G,-z1],[Z2,Scalar(1)],[H,z3]]
    for i in range(max_MN):
        Multiexp.append([Gi[i],-z4[i]])
        Multiexp.append([Hi[i],-z5[i]])
    if not dumb25519.multiexp(Multiexp) == Z:
        raise ArithmeticError('Bad z check!')

    return True