Пример #1
0
 def test_uniform_get(self):
     d = {0: 0, 1: 1}
     self.assertEqual(uniform_get(d, 0), 0)
     self.assertEqual(uniform_get(d, 2), None)
     self.assertEqual(uniform_get(d, 2, default=0), 0)
     l = [0, 1]
     self.assertEqual(uniform_get(l, 0), 0)
     self.assertEqual(uniform_get(l, 2), None)
     self.assertEqual(uniform_get(l, 2, default=0), 0)
Пример #2
0
def encode_bqm_as_qp(solver, linear, quadratic):
    """Encode the binary quadratic problem for submission to a given solver,
    using the `qp` format for data.

    Args:
        solver (:class:`dwave.cloud.solver.Solver`):
            The solver used.

        linear (dict[variable, bias]/list[variable, bias]):
            Linear terms of the model.

        quadratic (dict[(variable, variable), bias]):
            Quadratic terms of the model.

    Returns:
        encoded submission dictionary
    """
    active = active_qubits(linear, quadratic)

    # Encode linear terms. The coefficients of the linear terms of the objective
    # are encoded as an array of little endian 64 bit doubles.
    # This array is then base64 encoded into a string safe for json.
    # The order of the terms is determined by the _encoding_qubits property
    # specified by the server.
    # Note: only active qubits are coded with double, inactive with NaN
    nan = float('nan')
    lin = [
        uniform_get(linear, qubit, 0 if qubit in active else nan)
        for qubit in solver._encoding_qubits
    ]
    lin = base64.b64encode(struct.pack('<' + ('d' * len(lin)), *lin))

    # Encode the coefficients of the quadratic terms of the objective
    # in the same manner as the linear terms, in the order given by the
    # _encoding_couplers property, discarding tailing zero couplings
    quad = [
        quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0)
        for (q1, q2) in solver._encoding_couplers
        if q1 in active and q2 in active
    ]
    quad = base64.b64encode(struct.pack('<' + ('d' * len(quad)), *quad))

    # The name for this encoding is 'qp' and is explicitly included in the
    # message for easier extension in the future.
    return {
        'format': 'qp',
        'lin': lin.decode('utf-8'),
        'quad': quad.decode('utf-8')
    }
Пример #3
0
def from_bqm_sampleset(bqm,
                       sampleset,
                       sampler,
                       embedding_context=None,
                       warnings=None,
                       params=None):
    """Construct problem data for visualization based on the BQM and sampleset
    in logical space (both unembedded).

    In order for the embedded problem/response to be reconstructed, an embedding
    is required in either the sampleset, or as a standalone argument.

    Note:
        This adapter can only provide best-effort estimate of the submitted
        problem and received samples. Namely, because values of logical
        variables in `sampleset` are produced by a chain break resolution
        method, information about individual physical qubit values is lost.

        Please have in mind you will never see "broken chains" when using this
        adapter.

    Args:
        bqm (:class:`dimod.BinaryQuadraticModel`/:class:`dimod.core.bqm.BQM`):
            Problem in logical (unembedded) space, given as a BQM.

        sampleset (:class:`~dimod.sampleset.SampleSet`):
            Sampling response as a sampleset.

        sampler (:class:`~dimod.Sampler` or :class:`~dimod.ComposedSampler`):
            The :class:`~dwave.system.samplers.dwave_sampler.DWaveSampler`-
            derived sampler used to produce the sampleset off the bqm.

        embedding_context (dict, optional):
            A map containing an embedding of logical problem onto the
            solver's graph (the ``embedding`` key) and embedding parameters
            used (e.g. ``chain_strength``). It is optional only if
            ``sampleset.info`` contains it (see `return_embedding` argument of
            :meth:`~dwave.system.composites.embedding.EmbeddingComposite`).

        warnings (list[dict], optional):
            Optional list of warnings.

        params (dict, optional):
            Sampling parameters used.

    """
    logger.debug("from_bqm_sampleset({!r})".format(
        dict(bqm=bqm,
             sampleset=sampleset,
             sampler=sampler,
             warnings=warnings,
             embedding_context=embedding_context,
             params=params)))

    if not isinstance(sampler, dimod.Sampler):
        raise TypeError("dimod.Sampler instance expected for 'sampler'")

    # get embedding parameters
    if embedding_context is None:
        embedding_context = sampleset.info.get('embedding_context', {})
    if embedding_context is None:
        raise ValueError("embedding_context not given")
    embedding = embedding_context.get('embedding')
    if embedding is None:
        raise ValueError("embedding not given")
    chain_strength = embedding_context.get('chain_strength')

    def find_solver(sampler):
        if hasattr(sampler, 'solver'):
            return sampler.solver

        for child in getattr(sampler, 'children', []):
            try:
                return find_solver(child)
            except:
                pass

        raise TypeError("'sampler' doesn't use DWaveSampler")

    solver = find_solver(sampler)
    if not isinstance(solver, StructuredSolver):
        raise TypeError("only structured solvers are supported")

    topology = _get_solver_topology(solver)
    if topology['type'] not in SUPPORTED_SOLVER_TOPOLOGY_TYPES:
        raise TypeError("unsupported solver topology type")

    solver_id = solver.id
    problem_type = "ising" if sampleset.vartype is dimod.SPIN else "qubo"

    # bqm vartype must match sampleset vartype
    if bqm.vartype is not sampleset.vartype:
        bqm = bqm.change_vartype(sampleset.vartype, inplace=False)

    # if `embedding` is `dwave.embedding.transforms.EmbeddedStructure`, we don't
    # need `target_adjacency`
    emb_params = dict(embedding=embedding)
    if not hasattr(embedding, 'embed_bqm'):
        # proxy for detecting dict vs. EmbeddedStructure, without actually
        # importing EmbeddedStructure (did not exist in dwave-system<0.9.10)
        target_adjacency = edgelist_to_adjacency(solver.edges)
        emb_params.update(target_adjacency=target_adjacency)

    # get embedded bqm
    bqm_embedded = embed_bqm(bqm,
                             chain_strength=chain_strength,
                             smear_vartype=dimod.SPIN,
                             **emb_params)

    # best effort reconstruction of (unembedded/qmi) response/solutions
    # NOTE: we **can not** reconstruct physical qubit values from logical variables
    # (sampleset we have access to has variable values after chain breaks resolved!)
    active_variables = sorted(list(bqm_embedded.variables))
    active_variables_set = set(active_variables)
    logical_variables = list(sampleset.variables)
    var_to_idx = {var: idx for idx, var in enumerate(logical_variables)}
    unembedding = {q: var_to_idx[v] for v, qs in embedding.items() for q in qs}

    # sanity check
    assert set(unembedding) == active_variables_set

    def expand_sample(sample):
        return [int(sample[unembedding[q]]) for q in active_variables]

    solutions = [expand_sample(sample) for sample in sampleset.record.sample]

    # adjust energies to values returned by SAPI (offset embedding)
    energies = list(map(float, sampleset.record.energy - bqm_embedded.offset))

    num_occurrences = list(map(int, sampleset.record.num_occurrences))
    num_variables = solver.num_qubits
    timing = sampleset.info.get('timing')

    linear, quadratic, offset = bqm_embedded.to_ising()
    problem_data = {
        "format":
        "qp",  # SAPI non-conforming (nulls vs nans)
        "lin": [
            uniform_get(linear, v, 0 if v in active_variables_set else None)
            for v in solver._encoding_qubits
        ],
        "quad": [
            quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0)
            for (q1, q2) in solver._encoding_couplers
            if q1 in active_variables_set and q2 in active_variables_set
        ],
        "embedding":
        embedding
    }

    # try to get problem id. if not available, auto-generate one
    problem_id = sampleset.info.get('problem_id')
    if problem_id is None:
        problem_id = "local-%s" % uuid.uuid4()

    # try to reconstruct sampling params
    if params is None:
        params = {'num_reads': int(sum(num_occurrences))}

    # expand with defaults
    params = _expand_params(solver, params, timing)

    # try to get warnings from sampleset.info
    if warnings is None:
        warnings = sampleset.info.get('warnings')

    # construct problem stats
    problem_stats = _problem_stats(response=None,
                                   sampleset=sampleset,
                                   embedding_context=embedding_context)

    data = {
        "ready":
        True,
        "details": {
            "id": problem_id,
            "type": problem_type,
            "solver": solver.id,
            "label": sampleset.info.get('problem_label'),
        },
        "data":
        _problem_dict(solver_id, problem_type, problem_data, params,
                      problem_stats),
        "answer":
        _answer_dict(solutions, active_variables, energies, num_occurrences,
                     timing, num_variables),
        "unembedded_answer":
        _unembedded_answer_dict(sampleset),
        "warnings":
        _warnings(warnings),
        "rel":
        dict(solver=solver),
    }

    logger.trace("from_bqm_sampleset returned %r", data)

    return data
Пример #4
0
def from_bqm_response(bqm,
                      embedding_context,
                      response,
                      warnings=None,
                      params=None,
                      sampleset=None):
    """Construct problem data for visualization based on the unembedded BQM,
    the embedding used when submitting, and the low-level sampling response.

    Args:
        bqm (:class:`dimod.BinaryQuadraticModel`/:class:`dimod.core.bqm.BQM`):
            Problem in logical (unembedded) space, given as a BQM.

        embedding_context (dict):
            A map containing an embedding of logical problem onto the
            solver's graph (the ``embedding`` key) and embedding parameters
            used (e.g. ``chain_strength``, ``chain_break_method``, etc).

        response (:class:`dwave.cloud.computation.Future`):
            Sampling response, as returned by the low-level sampling interface
            in the Cloud Client (e.g. :meth:`dwave.cloud.solver.sample_ising`
            for Ising problems).

        warnings (list[dict], optional):
            Optional list of warnings.

        params (dict, optional):
            Sampling parameters used.

        sampleset (:class:`dimod.SampleSet`, optional):
            Optional unembedded sampleset.

    """
    logger.debug("from_bqm_response({!r})".format(
        dict(bqm=bqm,
             response=response,
             response_energies=response['energies'],
             embedding_context=embedding_context,
             warnings=warnings,
             params=params,
             sampleset=sampleset)))

    solver = response.solver
    if not isinstance(response.solver, StructuredSolver):
        raise TypeError("only structured solvers are supported")

    topology = _get_solver_topology(solver)
    if topology['type'] not in SUPPORTED_SOLVER_TOPOLOGY_TYPES:
        raise TypeError("unsupported solver topology type")

    solver_id = solver.id
    problem_type = response.problem_type

    active_variables = response['active_variables']
    active = set(active_variables)

    solutions = list(map(itemsgetter(*active_variables),
                         response['solutions']))
    energies = response['energies']
    num_occurrences = response.num_occurrences
    num_variables = solver.num_qubits
    timing = response.timing

    # bqm vartype must match response vartype
    if problem_type == "ising":
        bqm = bqm.change_vartype(dimod.SPIN, inplace=False)
    else:
        bqm = bqm.change_vartype(dimod.BINARY, inplace=False)

    # get embedding parameters
    if 'embedding' not in embedding_context:
        raise ValueError("embedding not given")
    embedding = embedding_context.get('embedding')
    chain_strength = embedding_context.get('chain_strength')
    chain_break_method = embedding_context.get('chain_break_method')

    # if `embedding` is `dwave.embedding.transforms.EmbeddedStructure`, we don't
    # need `target_adjacency`
    emb_params = dict(embedding=embedding)
    if not hasattr(embedding, 'embed_bqm'):
        # proxy for detecting dict vs. EmbeddedStructure, without actually
        # importing EmbeddedStructure (did not exist in dwave-system<0.9.10)
        target_adjacency = edgelist_to_adjacency(solver.edges)
        emb_params.update(target_adjacency=target_adjacency)

    # get embedded bqm
    bqm_embedded = embed_bqm(bqm,
                             chain_strength=chain_strength,
                             smear_vartype=dimod.SPIN,
                             **emb_params)

    linear, quadratic, offset = bqm_embedded.to_ising()
    problem_data = {
        "format":
        "qp",  # SAPI non-conforming (nulls vs nans)
        "lin": [
            uniform_get(linear, v, 0 if v in active else None)
            for v in solver._encoding_qubits
        ],
        "quad": [
            quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0)
            for (q1, q2) in solver._encoding_couplers
            if q1 in active and q2 in active
        ],
        "embedding":
        embedding
    }

    # try to reconstruct sampling params
    if params is None:
        params = {'num_reads': int(sum(num_occurrences))}

    # expand with defaults
    params = _expand_params(solver, params, timing)

    # TODO: if warnings are missing, calculate them here (since we have the
    # low-level response)

    # construct problem stats
    problem_stats = _problem_stats(response=response,
                                   sampleset=sampleset,
                                   embedding_context=embedding_context)

    data = {
        "ready":
        True,
        "details":
        _details_dict(response),
        "data":
        _problem_dict(solver_id, problem_type, problem_data, params,
                      problem_stats),
        "answer":
        _answer_dict(solutions, active_variables, energies, num_occurrences,
                     timing, num_variables),
        "warnings":
        _warnings(warnings),
        "rel":
        dict(solver=solver),
    }

    if sampleset is not None:
        data["unembedded_answer"] = _unembedded_answer_dict(sampleset)

    logger.trace("from_bqm_response returned %r", data)

    return data
Пример #5
0
def from_qmi_response(problem,
                      response,
                      embedding_context=None,
                      warnings=None,
                      params=None,
                      sampleset=None):
    """Construct problem data for visualization based on the low-level sampling
    problem definition and the low-level response.

    Args:
        problem ((list/dict, dict[(int, int), float]) or dict[(int, int), float]):
            Problem in Ising or QUBO form, conforming to solver graph.
            Note: if problem is given as tuple, it is assumed to be in Ising
            variable space, and if given as a dict, Binary variable space is
            assumed. Zero energy offset is always implied.

        response (:class:`dwave.cloud.computation.Future`):
            Sampling response, as returned by the low-level sampling interface
            in the Cloud Client (e.g. :meth:`dwave.cloud.Solver.sample_ising`
            for Ising problems).

        embedding_context (dict, optional):
            A map containing an embedding of logical problem onto the
            solver's graph (the ``embedding`` key) and embedding parameters
            used (e.g. ``chain_strength``).

        warnings (list[dict], optional):
            Optional list of warnings.

        params (dict, optional):
            Sampling parameters used.

        sampleset (:class:`dimod.SampleSet`, optional):
            Optional unembedded sampleset.

    """
    logger.debug("from_qmi_response({!r})".format(
        dict(problem=problem,
             response=response,
             response_energies=response['energies'],
             embedding_context=embedding_context,
             warnings=warnings,
             params=params,
             sampleset=sampleset)))

    try:
        linear, quadratic = problem
    except:
        linear, quadratic = reformat_qubo_as_ising(problem)

    # make sure lin/quad are not dimod views (that handle directed edges)
    if isinstance(linear, BQMView):
        linear = dict(linear)
    if isinstance(quadratic, BQMView):
        quadratic = dict(quadratic)

    solver = response.solver
    if not isinstance(response.solver, StructuredSolver):
        raise TypeError("only structured solvers are supported")

    topology = _get_solver_topology(solver)
    if topology['type'] not in SUPPORTED_SOLVER_TOPOLOGY_TYPES:
        raise TypeError("unsupported solver topology type")

    solver_id = solver.id
    problem_type = response.problem_type

    variables = list(response.variables)
    active = active_qubits(linear, quadratic)

    # filter out invalid values (user's error in problem definition), since
    # SAPI ignores them too
    active = {q for q in active if q in solver.variables}

    # sanity check
    active_variables = response['active_variables']
    assert set(active) == set(active_variables)

    solutions = list(map(itemsgetter(*active_variables),
                         response['solutions']))
    energies = response['energies']
    num_occurrences = response.num_occurrences
    num_variables = solver.num_qubits
    timing = response.timing

    # note: we can't use encode_problem_as_qp(solver, linear, quadratic) because
    # visualizer accepts decoded lists (and nulls instead of NaNs)
    problem_data = {
        "format":
        "qp",  # SAPI non-conforming (nulls vs nans)
        "lin": [
            uniform_get(linear, v, 0 if v in active else None)
            for v in solver._encoding_qubits
        ],
        "quad": [
            quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0)
            for (q1, q2) in solver._encoding_couplers
            if q1 in active and q2 in active
        ]
    }

    # include optional embedding
    if embedding_context is not None and 'embedding' in embedding_context:
        problem_data['embedding'] = embedding_context['embedding']

    # try to reconstruct sampling params
    if params is None:
        params = {'num_reads': int(sum(num_occurrences))}

    # expand with defaults
    params = _expand_params(solver, params, timing)

    # construct problem stats
    problem_stats = _problem_stats(response=response,
                                   sampleset=sampleset,
                                   embedding_context=embedding_context)

    data = {
        "ready":
        True,
        "details":
        _details_dict(response),
        "data":
        _problem_dict(solver_id, problem_type, problem_data, params,
                      problem_stats),
        "answer":
        _answer_dict(solutions, active_variables, energies, num_occurrences,
                     timing, num_variables),
        "warnings":
        _warnings(warnings),
        "rel":
        dict(solver=solver),
    }

    if sampleset is not None:
        data["unembedded_answer"] = _unembedded_answer_dict(sampleset)

    logger.trace("from_qmi_response returned %r", data)

    return data
Пример #6
0
    def verify_data_encoding(self,
                             problem,
                             response,
                             solver,
                             params,
                             data,
                             embedding_context=None):
        # avoid persistent data modification
        data = data.copy()

        # make sure data correct after JSON decoding (minus the 'rel' data)
        del data['rel']
        data = json.loads(json.dumps(data))

        # test structure
        self.assertIsInstance(data, dict)
        self.assertTrue(
            all(k in data for k in 'details data answer warnings'.split()))

        # .details
        self.assertIn('id', data['details'])
        self.assertIn('label', data['details'])
        self.assertEqual(data['details']['solver'], solver.id)

        # .problem
        self.assertEqual(data['data']['type'], response.problem_type)

        # .problem.params, smoke tests
        self.assertIn('params', data['data'])
        self.assertEqual(data['data']['params']['num_reads'],
                         params['num_reads'])
        self.assertIn('annealing_time', data['data']['params'])
        self.assertIn('programming_thermalization', data['data']['params'])

        if response.problem_type == 'ising':
            linear, quadratic = problem
        elif response.problem_type == 'qubo':
            linear, quadratic = reformat_qubo_as_ising(problem)
        else:
            self.fail("Unknown problem type")

        active_variables = response['active_variables']
        problem_data = {
            "format":
            "qp",
            "lin": [
                uniform_get(linear, v, 0 if v in active_variables else None)
                for v in solver._encoding_qubits
            ],
            "quad": [
                quadratic.get((q1, q2), 0) + quadratic.get((q2, q1), 0)
                for (q1, q2) in solver._encoding_couplers
                if q1 in active_variables and q2 in active_variables
            ]
        }
        if embedding_context is not None:
            problem_data['embedding'] = embedding_context['embedding']
        self.assertDictEqual(data['data']['data'], problem_data)

        # .answer
        self.assertEqual(sum(data['answer']['num_occurrences']),
                         params['num_reads'])
        self.assertEqual(data['answer']['num_occurrences'],
                         response['num_occurrences'])
        self.assertEqual(data['answer']['num_variables'],
                         response['num_variables'])
        self.assertEqual(data['answer']['active_variables'], active_variables)
        solutions = [[sol[idx] for idx in active_variables]
                     for sol in response['solutions']]
        self.assertEqual(data['answer']['solutions'], solutions)
        self.assertEqual(data['answer']['energies'], response['energies'])
        self.assertEqual(data['answer']['timing'], response['timing'])