Пример #1
0
def test_get_bit_value():
    num_bits = 5
    bit_value1 = bl_lstsq.get_bit_value(num_bits)
    expected_result1 = np.array([-1, 0.5, 0.25, 0.125, 0.0625])
    assert_array_equal(bit_value1, expected_result1,
                       err_msg='Wrong bit value')
    bit_value2 = bl_lstsq.get_bit_value(num_bits, fixed_point=2, sign='p')
    expected_result2 = np.array([2, 1, 0.5, 0.25, 0.125])
    assert_array_equal(bit_value2, expected_result2,
                       err_msg='Wrong bit value')
    bit_value3 = bl_lstsq.get_bit_value(num_bits, fixed_point=1, sign='n')
    expected_result3 = np.array([-1, -0.5, -0.25, -0.125, -0.0625])
    assert_array_equal(bit_value3, expected_result3,
                       err_msg='Wrong bit value')
def get_laplace_2D(N, delta, BC, num_bits, fixed_point=0):
    """Get information about 2D Laplace's equation (steady-state heat equation)."""

    # Get finite-difference stiffness matrix
    Ax = sparse.diags([-1, 2, -1], [-1, 0, 1],
                      shape=(N['x'], N['x'])) / (delta['x']**2)
    Ay = sparse.diags([-1, 2, -1], [-1, 0, 1],
                      shape=(N['y'], N['y'])) / (delta['y']**2)
    Ix = sparse.identity(N['x'])
    Iy = sparse.identity(N['y'])
    A = (sparse.kron(Iy, Ax) + sparse.kron(Ay, Ix)).tocsc()

    # Get RHS
    b = np.zeros((N['y'], N['x']))
    # boundary conditions
    b[-1, :] = b[-1, :] + BC['top'] / (delta['y']**2)
    b[0, :] = b[0, :] + BC['bottom'] / (delta['y']**2)
    b[:, 0] = b[:, 0] + BC['left'] / (delta['x']**2)
    b[:, -1] = b[:, -1] + BC['right'] / (delta['x']**2)
    b = sparse.csr_matrix(b.reshape(N['x'] * N['y'], 1))

    # set the bit value to discrete the actual value as a fixed point
    bit_value = bl_lstsq.get_bit_value(num_bits, fixed_point=fixed_point)
    # discretized version of matrix `A`
    A_discrete = bl_lstsq.discretize_matrix(A.toarray(), bit_value)

    output = {'A': A, 'b': b, 'A_discrete': A_discrete, 'bit_value': bit_value}
    return output
def get_linear_system(N,
                      num_bits,
                      fixed_point=0,
                      exact_x=True,
                      random_seed=None):
    """Get information about 1D Laplace's equation."""

    # number of predictor and number of response
    num_predictor_discrete = num_bits * N
    num_response = N

    # matrix `A`
    A = (np.eye(num_response, k=-1) - 2 * np.eye(num_response, k=0) +
         np.eye(num_response, k=1))
    # set the bit value to discrete the actual value as a fixed point
    bit_value = bl_lstsq.get_bit_value(num_bits, fixed_point=fixed_point)
    # discretized version of matrix `A`
    A_discrete = bl_lstsq.discretize_matrix(A, bit_value)

    if random_seed is None:
        rng = np.random.default_rng()
    else:
        rng = np.random.default_rng(random_seed)

    if exact_x:
        # binary vector `q`
        q = rng.choice([0, 1], size=num_predictor_discrete)
        # vector `x`
        x = q2x(q, bit_value)
    else:
        # vector `x`
        x = (rng.choice([-1, 1], size=num_response) * (2**fixed_point) *
             rng.random(num_response))

    # calculate vector `b`
    b = A @ x

    output = {
        'A': A,
        'x': x,
        'b': b,
        'A_discrete': A_discrete,
        'bit_value': bit_value
    }
    return output
Пример #4
0
def test_get_bit_value(num_bits, fixed_point, sign, expected_result):
    assert_array_equal(
        bl_lstsq.get_bit_value(num_bits, fixed_point=fixed_point, sign=sign),
        expected_result,
        err_msg="Wrong bit value",
    )