Пример #1
0
def test_data_splitter_with_np_array_with_larger_last_slice():
    x = np.ones([32, 32, 32, 3], dtype=np.float32)
    res2 = data_splitter(x, 5)
    assert all(
        map(lambda x: shape_as_list(x) == [6, 32, 32, 3],
            [res2['slice{}'.format(i)] for i in range(4)])) is True
    assert shape_as_list(res2['slice4']) == [8, 32, 32, 3]
Пример #2
0
def test_data_splitter_with_tensor_with_larger_last_slice():
    x = tf.ones([32, 64, 64, 3], dtype=tf.float32)
    x = Tensor(x)
    res2 = data_splitter(x, 5)
    assert all(
        map(lambda x: shape_as_list(x) == [6, 64, 64, 3],
            [res2['slice{}'.format(i)] for i in range(4)])) is True
    assert all(
        map(lambda x: isinstance(x, Tensor),
            [res2['slice{}'.format(i)] for i in range(5)])) is True
    assert shape_as_list(res2['slice4']) == [8, 64, 64, 3]
Пример #3
0
def _(x, nb_split, name='data_splitter'):
    shape_x = shape_as_list(x)
    split_size = shape_x[0] // nb_split
    res = {}
    offset = 0
    for i in range(nb_split - 1):
        res['slice{}'.format(i)] = x[offset:offset + split_size]
        offset = offset + split_size
    res['slice{}'.format(nb_split - 1)] = x[offset:]
    return res
Пример #4
0
def _(x, nb_split, name='data_splitter'):
    shape_x = shape_as_list(x)
    split_size = shape_x[0] // nb_split
    res = {}
    offset = [0 for i in shape_x]
    slice_size = copy.copy(shape_x)
    slice_size[0] = split_size
    for i in range(nb_split - 1):
        res['slice{}'.format(i)] = tf.slice(x, offset, slice_size)
        offset[0] = offset[0] + split_size
    slice_size[0] = shape_x[0] - offset[0]
    res['slice{}'.format(nb_split - 1)] = tf.slice(x, offset, slice_size)
    return res
Пример #5
0
def test_data_splitter_with_tf_tensor():
    x = tf.ones([32, 64, 64, 3], dtype=tf.float32)
    res1 = data_splitter(x, 4)
    assert all(
        map(lambda x: shape_as_list(x) == [8, 64, 64, 3],
            [res1['slice{}'.format(i)] for i in range(4)])) is True
Пример #6
0
def test_data_splitter_with_np_array():
    x = np.ones([32, 32, 32, 3], dtype=np.float32)
    res1 = data_splitter(x, 4)
    assert all(
        map(lambda x: shape_as_list(x) == [8, 32, 32, 3],
            [res1['slice{}'.format(i)] for i in range(4)])) is True