self.load_state_dict(torch.load('BEST_WS')) os.remove('BEST_WS') best_asd_path = os.path.join( config.DATA_PATH, 'Trained_Models', 'Complex_Fully_Connected_WGAN_LPF_W', time_stamp() + '|WS' + '|BC:' + str(batch_size) + '|g_eta:' + str(g_eta) + '|d_eta:' + str(d_eta) + '|n_critic:' + str(n_critic) + '|clip_value:' + str(clip_value)) torch.save(self.state_dict(), best_asd_path) except: pass return if __name__ == '__main__': set_start_method('spawn') # To make dynamic reporter works for eta in [0.0001, 0.00001, 0.001]: for i in range(3): report_path = os.path.join( config.DATA_PATH, 'Training_Reports', 'Complex_Fully_Connected_WGAN_LPF_W', time_stamp() + '|eta:' + str(eta) + '|n_critic:' + str(5) + '|clip_value:' + str(0.01) + '.png') init_dynamic_report(3, report_path) gan = Complex_Fully_Connected_WGAN_LPF_W(dim) gan.train(train_set, 10, 200, eta, eta, 5, 0.01, True) stop_dynamic_report()
a[1] # %% a = np.array([]) # %% a # %% a.shape # %% from dynamic_reporter import init_dynamic_report from dynamic_reporter import stop_dynamic_report import dynamic_reporter import time # %% q = init_dynamic_report(10) # %% stop_dynamic_report(564) # %% q # %% q.qsize() # %% q.put({'wefwf': 58789874987.456}) # %% def f(): global A if 'A' in globals(): print('ok') else: print('no')