Пример #1
0
    def test_overload(self):
        # Create an overloaded blaze func, populate it with
        # some ckernel implementations extracted from numpy,
        # and test some calls on it.
        d = blaze.overloading.Dispatcher()
        myfunc = blaze.BlazeFunc(d)
        def myfunc_dummy(x, y): raise NotImplementedError

        # overload int32 -> np.add
        sig = blaze.dshape("A..., int32 -> A..., int32 -> A..., int32")
        d.add_overload(myfunc_dummy, sig, {})
        ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                        (np.int32, np.int32, np.int32), False)
        myfunc.implement(myfunc_dummy, sig, "ckernel", ckd)

        # overload int16 -> np.subtract (so we can see the difference)
        sig = blaze.dshape("A..., int16 -> A..., int16 -> A..., int16")
        d.add_overload(myfunc_dummy, sig, {})
        ckd = _lowlevel.ckernel_deferred_from_ufunc(np.subtract,
                        (np.int16, np.int16, np.int16), False)
        myfunc.implement(myfunc_dummy, sig, "ckernel", ckd)

        # int32 overload -> add
        a = blaze.eval(myfunc(blaze.array([3,4]), blaze.array([1,2])))
        self.assertEqual(a.dshape, blaze.dshape('2, int32'))
        self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6])
        # int16 overload -> subtract
        a = blaze.eval(myfunc(blaze.array([3,4], dshape='int16'),
                        blaze.array([1,2], dshape='int16')))
        self.assertEqual(a.dshape, blaze.dshape('2, int16'))
        self.assertEqual(nd.as_py(a._data.dynd_arr()), [2, 2])

        # type promotion to int32
        a = blaze.eval(myfunc(blaze.array([3,4], dshape='int16'),
                        blaze.array([1,2])))
        self.assertEqual(a.dshape, blaze.dshape('2, int32'))
        self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6])
        a = blaze.eval(myfunc(blaze.array([3,4]),
                        blaze.array([1,2], dshape='int16')))
        self.assertEqual(a.dshape, blaze.dshape('2, int32'))
        self.assertEqual(nd.as_py(a._data.dynd_arr()), [4, 6])

        # type promotion to int16
        a = blaze.eval(myfunc(blaze.array([3,4], dshape='int8'),
                        blaze.array([1,2], dshape='int8')))
        self.assertEqual(a.dshape, blaze.dshape('2, int16'))
        self.assertEqual(nd.as_py(a._data.dynd_arr()), [2, 2])

        # A little bit of nesting
        a = blaze.eval(myfunc(myfunc(blaze.array([3,4]), blaze.array([1,2])),
                        blaze.array([2,10])))
        self.assertEqual(a.dshape, blaze.dshape('2, int32'))
        self.assertEqual(nd.as_py(a._data.dynd_arr()), [6, 16])

        # More nesting, with conversions
        a = blaze.eval(myfunc(myfunc(blaze.array([1,2]), blaze.array([-2, 10])),
                        myfunc(blaze.array([1, 5], dshape='int16'),
                               blaze.array(3, dshape='int16'))))
        self.assertEqual(a.dshape, blaze.dshape('2, int32'))
        self.assertEqual(nd.as_py(a._data.dynd_arr()), [-3, 14])
Пример #2
0
    def test_overload_different_argcount(self):
        myfunc = BlazeFunc('test', 'ovld')
        # Two parameter overload
        ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                                                    (np.int32,) * 3,
                                                    False)
        myfunc.add_overload("(A... * int32, A... * int32) -> A... * int32", ckd)

        # One parameter overload
        ckd = _lowlevel.ckernel_deferred_from_ufunc(np.negative,
                                                    (np.int32,) * 2, False)
        myfunc.add_overload("(A... * int16, A... * int16) -> A... * int16", ckd)

        return myfunc
Пример #3
0
    def test_overload_different_argcount(self):
        myfunc = ElementwiseBlazeFunc('test', 'ovld')
        # Two parameter overload
        ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                                                    (np.int32,) * 3,
                                                    False)
        myfunc.add_overload("(int32, int32) -> int32", ckd)

        # One parameter overload
        ckd = _lowlevel.ckernel_deferred_from_ufunc(np.negative,
                                                    (np.int32,) * 2, False)
        myfunc.add_overload("(int16, int16) -> int16", ckd)

        return myfunc
def blazefunc_from_numpy_ufunc(uf, modname, name, acquires_gil):
    """Converts a NumPy ufunc into a Blaze ufunc.

    Parameters
    ----------
    uf : NumPy ufunc
        The ufunc to convert.
    modname : str
        The module name to report in the ufunc's name
    name : str
        The ufunc's name.
    acquires_gil : bool
        True if the kernels in the ufunc need the GIL.
        TODO: should support a dict {type -> bool} to allow per-kernel control.
    """
    # Get the list of type signatures
    tplist = _lowlevel.numpy_typetuples_from_ufunc(uf)
    tplist = _filter_tplist(tplist)
    siglist = [_make_sig(tp) for tp in tplist]
    kernlist = [_lowlevel.ckernel_deferred_from_ufunc(uf, tp, acquires_gil)
                for tp in tplist]
    # Create the empty blaze function to start
    bf = ElementwiseBlazeFunc('blaze', name)
    # TODO: specify elementwise
    #bf.add_metadata({'elementwise': True})
    # Add an overload to the function for each signature
    for (tp, sig, kern) in zip(tplist, siglist, kernlist):
        bf.add_overload(sig, kern)
    return bf
Пример #5
0
    def test_lift_ckernel(self):
        # First get a ckernel from numpy
        requiregil = False
        ckd = _lowlevel.ckernel_deferred_from_ufunc(np.ldexp,
                        (np.float64, np.float64, np.int32),
                        requiregil)
        self.assertEqual(nd.as_py(ckd.types),
                        [ndt.float64, ndt.float64, ndt.int32])

        # Now lift it
        ckd_lifted = _lowlevel.lift_ckernel_deferred(ckd,
                        ['var * var * float64', 'strided * var * float64',
                         'strided * 1 * int32'])
        self.assertEqual(nd.as_py(ckd_lifted.types),
                        [ndt.type(x) for x in ['var * var * float64',
                                    'strided * var * float64', 'strided * 1 * int32']])
        # Create some compatible arguments
        out = nd.empty('var * var * float64')
        in0 = nd.array([[1, 2, 3], [4, 5], [6], [7,9,10]], type='strided * var * float64')
        in1 = nd.array([[-1], [10], [100], [-12]], type='strided * 1 * int32')
        # Instantiate and call the kernel on these arguments
        ckd_lifted.__call__(out, in0, in1)
        # Verify that we got the expected result
        self.assertEqual(nd.as_py(out),
                    [[0.5, 1.0, 1.5],
                     [4096.0, 5120.0],
                     [float(6*2**100)],
                     [0.001708984375, 0.002197265625, 0.00244140625]])
Пример #6
0
def blazefunc_from_numpy_ufunc(uf, modname, name, acquires_gil):
    """Converts a NumPy ufunc into a Blaze ufunc.

    Parameters
    ----------
    uf : NumPy ufunc
        The ufunc to convert.
    modname : str
        The module name to report in the ufunc's name
    name : str
        The ufunc's name.
    acquires_gil : bool
        True if the kernels in the ufunc need the GIL.
        TODO: should support a dict {type -> bool} to allow per-kernel control.
    """
    # Get the list of type signatures
    tplist = _lowlevel.numpy_typetuples_from_ufunc(uf)
    tplist = _filter_tplist(tplist)
    siglist = [_make_sig(tp) for tp in tplist]
    kernlist = [_lowlevel.ckernel_deferred_from_ufunc(uf, tp, acquires_gil)
                for tp in tplist]
    # Create the empty blaze function to start
    blaze_func = function.BlazeFunc()
    blaze_func.add_metadata({'elementwise': True})
    # Add default dummy dispatching for 'python' mode
    pydispatcher = blaze_func.get_dispatcher('python')
    # Add dispatching to the kernel for each signature
    ckdispatcher = blaze_func.get_dispatcher('ckernel')
    for (tp, sig, kern) in zip(tplist, siglist, kernlist):
        # The blaze function currently requires matching (do-nothing)
        # python functions
        pyfunc = _make_pyfunc(len(tp) - 1, modname, name)
        datashape.overloading.overload(sig, dispatcher=pydispatcher)(pyfunc)
        datashape.overloading.overload(sig, dispatcher=ckdispatcher)(kern)
    return blaze_func
Пример #7
0
def blazefunc_from_numpy_ufunc(uf, modname, name, acquires_gil):
    """Converts a NumPy ufunc into a Blaze ufunc.

    Parameters
    ----------
    uf : NumPy ufunc
        The ufunc to convert.
    modname : str
        The module name to report in the ufunc's name
    name : str
        The ufunc's name.
    acquires_gil : bool
        True if the kernels in the ufunc need the GIL.
        TODO: should support a dict {type -> bool} to allow per-kernel control.
    """
    # Get the list of type signatures
    tplist = _lowlevel.numpy_typetuples_from_ufunc(uf)
    tplist = _filter_tplist(tplist)
    siglist = [_make_sig(tp) for tp in tplist]
    kernlist = [
        _lowlevel.ckernel_deferred_from_ufunc(uf, tp, acquires_gil)
        for tp in tplist
    ]
    # Create the empty blaze function to start
    bf = ElementwiseBlazeFunc('blaze', name)
    # TODO: specify elementwise
    #bf.add_metadata({'elementwise': True})
    # Add an overload to the function for each signature
    for (tp, sig, kern) in zip(tplist, siglist, kernlist):
        bf.add_overload(sig, kern)
    return bf
Пример #8
0
def create_overloaded_add():
    # Create an overloaded blaze func, populate it with
    # some ckernel implementations extracted from numpy,
    # and test some calls on it.
    myfunc = BlazeFunc('test', 'myfunc')

    # overload int32 -> np.add
    ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                                                (np.int32, np.int32, np.int32),
                                                False)
    myfunc.add_overload("(A... * int32, A... * int32) -> A... * int32", ckd)

    # overload int16 -> np.subtract (so we can see the difference)
    ckd = _lowlevel.ckernel_deferred_from_ufunc(np.subtract,
                                                (np.int16, np.int16, np.int16),
                                                False)
    myfunc.add_overload("(A... * int16, A... * int16) -> A... * int16", ckd)

    return myfunc
Пример #9
0
def create_overloaded_add():
    # Create an overloaded blaze func, populate it with
    # some ckernel implementations extracted from numpy,
    # and test some calls on it.
    myfunc = ElementwiseBlazeFunc('test', 'myfunc')

    # overload int32 -> np.add
    ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                                                (np.int32, np.int32, np.int32),
                                                False)
    myfunc.add_overload("(int32, int32) -> int32", ckd)

    # overload int16 -> np.subtract (so we can see the difference)
    ckd = _lowlevel.ckernel_deferred_from_ufunc(np.subtract,
                                                (np.int16, np.int16, np.int16),
                                                False)
    myfunc.add_overload("(int16, int16) -> int16", ckd)

    return myfunc
Пример #10
0
def create_overloaded_add():
    # Create an overloaded blaze func, populate it with
    # some ckernel implementations extracted from numpy,
    # and test some calls on it.
    #d = blaze.overloading.Dispatcher()
    @function('A -> A -> A')
    def myfunc(x, y):
        raise NotImplementedError

    # overload int32 -> np.add
    ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                  (np.int32, np.int32, np.int32), False)
    kernel(myfunc, "ckernel", ckd,
           "A..., int32 -> A..., int32 -> A..., int32")

    # overload int16 -> np.subtract (so we can see the difference)
    ckd = _lowlevel.ckernel_deferred_from_ufunc(np.subtract,
                    (np.int16, np.int16, np.int16), False)
    kernel(myfunc, "ckernel", ckd,
           "A..., int16 -> A..., int16 -> A..., int16")

    return myfunc
Пример #11
0
 def test_sum_2d_axisall(self):
     # Use the numpy add ufunc for this lifting test
     ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                     (np.int32, np.int32, np.int32),
                     False)
     in0 = nd.array([[3, 12, -5], [10, 2, 3]])
     # Simple lift
     sum = _lowlevel.lift_reduction_ckernel_deferred(ckd,
                                              'strided * strided * int32',
                                              commutative=True,
                                              associative=True)
     out = nd.empty(ndt.int32)
     sum.__call__(out, in0)
     self.assertEqual(nd.as_py(out), 25)
Пример #12
0
 def test_sum_1d(self):
     # Use the numpy add ufunc for this lifting test
     ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                     (np.int32, np.int32, np.int32),
                     False)
     in0 = nd.array([3, 12, -5, 10, 2])
     # Simple lift
     sum = _lowlevel.lift_reduction_ckernel_deferred(ckd, 'strided * int32')
     out = nd.empty(ndt.int32)
     sum.__call__(out, in0)
     self.assertEqual(nd.as_py(out), 22)
     # Lift with keepdims
     sum = _lowlevel.lift_reduction_ckernel_deferred(ckd, 'strided * int32',
                                                     keepdims=True)
     out = nd.empty(1, ndt.int32)
     sum.__call__(out, in0)
     self.assertEqual(nd.as_py(out), [22])
Пример #13
0
 def check_from_numpy_int32_add(self, requiregil):
     # Get int32 add as a ckernel_deferred
     ckd = _lowlevel.ckernel_deferred_from_ufunc(np.add,
                     (np.int32, np.int32, np.int32),
                     requiregil)
     self.assertEqual(nd.as_py(ckd.types), [ndt.int32]*3)
     # Instantiate as a single kernel
     with _lowlevel.ckernel.CKernelBuilder() as ckb:
         meta = (ctypes.c_void_p * 3)()
         _lowlevel.ckernel_deferred_instantiate(ckd, ckb, 0, meta, "single")
         ck = ckb.ckernel(_lowlevel.ExprSingleOperation)
         a = ctypes.c_int32(10)
         b = ctypes.c_int32(21)
         c = ctypes.c_int32(0)
         src = (ctypes.c_void_p * 2)()
         src[0] = ctypes.addressof(a)
         src[1] = ctypes.addressof(b)
         ck(ctypes.addressof(c), src)
         self.assertEqual(c.value, 31)
     # Instantiate as a strided kernel
     with _lowlevel.ckernel.CKernelBuilder() as ckb:
         meta = (ctypes.c_void_p * 3)()
         _lowlevel.ckernel_deferred_instantiate(ckd, ckb, 0, meta, "strided")
         ck = ckb.ckernel(_lowlevel.ExprStridedOperation)
         a = (ctypes.c_int32 * 3)()
         b = (ctypes.c_int32 * 3)()
         c = (ctypes.c_int32 * 3)()
         for i, v in enumerate([1,4,6]):
             a[i] = v
         for i, v in enumerate([3, -1, 12]):
             b[i] = v
         src = (ctypes.c_void_p * 2)()
         src[0] = ctypes.addressof(a)
         src[1] = ctypes.addressof(b)
         strides = (c_ssize_t * 2)()
         strides[0] = strides[1] = 4
         ck(ctypes.addressof(c), 4, src, strides, 3)
         self.assertEqual(c[0], 4)
         self.assertEqual(c[1], 3)
         self.assertEqual(c[2], 18)
Пример #14
0
floats = np.float32, np.float64
complexes = np.complex64, np.complex128,

reductions = [('any', np.logical_or,   False, bools),
              ('all', np.logical_and,  True, bools),
              ('sum', np.add,          0, ints + floats + complexes),
              ('product', np.multiply, 1, ints + floats + complexes),
              ('min', np.minimum,      None, bools + ints + floats + complexes),
              ('max', np.maximum,      None, bools + ints + floats + complexes)]

for name, np_op, ident, types in reductions:
    x = ReductionBlazeFunc('blaze', name)
    for typ in types:
        x.add_overload('(%s) -> %s' % (typ.__name__, typ.__name__),
                 _lowlevel.ckernel_deferred_from_ufunc(np_op,
                                                       (typ,) * 3,
                                                       False),
                 associative=True, commutative=True,
                 identity=ident)
        locals()[name] = x

#------------------------------------------------------------------------
# Other Funcs
#------------------------------------------------------------------------

rolling_mean = RollingWindowBlazeFunc('blaze', 'rolling_mean')
mean1d = _lowlevel.make_builtin_mean1d_ckernel_deferred('float64', 0)
rolling_mean.add_overload('(M * float64) -> M * float64', mean1d)

diff = BlazeFunc('blaze', 'diff')
subtract_doubles_ck = _lowlevel.ckernel_deferred_from_ufunc(np.subtract,
Пример #15
0
#------------------------------------------------------------------------

real = blazefunc_from_dynd_property([ndt.complex_float32, ndt.complex_float64],
                                    'real', 'blaze', 'real')

imag = blazefunc_from_dynd_property([ndt.complex_float32, ndt.complex_float64],
                                    'imag', 'blaze', 'imag')

#------------------------------------------------------------------------
# Reduction UFuncs from NumPy
#------------------------------------------------------------------------

any = ReductionBlazeFunc('blaze', 'any')
any.add_overload('(bool) -> bool',
                 _lowlevel.ckernel_deferred_from_ufunc(np.logical_or,
                                                       (np.bool,) * 3,
                                                       False),
                 associative=True, commutative=True,
                 identity=False)

all = ReductionBlazeFunc('blaze', 'all')
all.add_overload('(bool) -> bool',
                 _lowlevel.ckernel_deferred_from_ufunc(np.logical_and,
                                                       (np.bool,) * 3,
                                                       False),
                 associative=True, commutative=True,
                 identity=True)

sum = ReductionBlazeFunc('blaze', 'sum')
for dt in [np.int32, np.int64, np.float32, np.float64,
           np.complex64, np.complex128]:
Пример #16
0
                                    'date', 'blaze', 'date')
time = blazefunc_from_dynd_property([ndt.datetime],
                                    'time', 'blaze', 'time')

#------------------------------------------------------------------------
# Reduction UFuncs from NumPy
#------------------------------------------------------------------------

bools = np.bool,
ints = np.int8, np.int16, np.int32, np.int64,
floats = np.float32, np.float64
complexes = np.complex64, np.complex128,

reductions = [('any', np.logical_or,    False, bools),
              ('all', np.logical_and,  True, bools),
              ('sum', np.add,          0, ints + floats + complexes),
              ('product', np.multiply, 1, ints + floats + complexes),
              ('min', np.minimum,      None, bools + ints + floats + complexes),
              ('max', np.maximum,      None, bools + ints + floats + complexes)]

for name, np_op, ident, types in reductions:
    x = ReductionBlazeFunc('blaze', name)
    for typ in types:
        x.add_overload('(%s) -> %s' % (typ.__name__, typ.__name__),
                 _lowlevel.ckernel_deferred_from_ufunc(np_op,
                                                       (typ,) * 3,
                                                       False),
                 associative=True, commutative=True,
                 identity=ident)
        locals()[name] = x