Пример #1
0
def createEarnHoldBarsImg():
    from earnmi_demo.strategy_demo.holdbars.HoldBarAnanysic import macd, kdj
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    chart = Chart()
    indictor = macd()
    computeCount = 0
    for code in lists:
        bars = sw.getSW2Daily(code, start, end)
        # print(f"bar.size = {bars.__len__()}")
        chart.run(bars, indictor)

        holdBarList = indictor.getHoldBars()

        for holdBar in holdBarList:
            barList = holdBar.bars
            if (HoldBarUtils.isEarnBarList(barList)):
                tiemStr = holdBar.start_time.strftime('%Y%m%d')
                chart.show(barList, savefig=f'imgs\\earn-{code}-{tiemStr}.png')

        # print(f"code:{code},cost_pct = %.2f%%" % (total_cost_pct*100))
        computeCount = computeCount + 1
        if computeCount > 10:
            break
Пример #2
0
def computeAll():
    from earnmi.data.SWImpl import SWImpl
    from earnmi.chart.Chart import Chart, IndicatorItem, Signal
    sw = SWImpl()
    lists = sw.getSW2List()

    start = datetime(2018, 5, 1)
    end = datetime(2020, 8, 17)

    dataSet = {}

    class DataItem(object):
        pass

    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator()
        for bar in barList:
            ##先识别形态
            rets = KPattern.matchIndicator(indicator)
            size = len(rets)
            if size > 0:
                """有形态识别出来
                """
                for item in rets:
                    name = item.name
                    value = item.value

                    dataItem = None
                    if dataSet.__contains__(name):
                        dataItem = dataSet[name]
                    else:
                        dataItem = DataItem()
                        dataItem.values = []  ##形态被识别的值。
                        dataItem.pcts = []  ##识别之后第二天的盈利情况
                        dataSet[name] = dataItem
                    ##第二天的收益
                    pct = (bar.close_price - bar.open_price) / bar.open_price
                    ##收录当前形态
                    dataItem.values.append(value)
                    dataItem.pcts.append(pct)
                pass
            indicator.update_bar(bar)

    ##打印当前形态
    print(f"总共识别出{len(dataSet)}个形态")
    for key, dataItem in dataSet.items():
        values = np.array(dataItem.values)
        pcts = np.array(dataItem.pcts) * 100
        print(
            f"{key}: len={len(dataItem.values)},values:{values.mean()},pcts:%.2f%%,pcts_std=%.2f"
            % (pcts.mean(), pcts.std()))
Пример #3
0
def collectKPattherAndShowChart():
    from earnmi.data.SWImpl import SWImpl
    from vnpy.trader.constant import Exchange
    from vnpy.trader.constant import Interval
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    bars = []
    limitSize = 0
    chart = Chart()

    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None

        yestodayIsMatch = False

        for i in range(0, len(barList)):
            bar = barList[i]
            indicator.update_bar(bar)
            patternValue = KPattern.encode1KAgo1(indicator)
            todayIsMatch = 9 == patternValue

            if todayIsMatch:
                if indicator.count > 20:
                    chart.show(
                        indicator.makeBars(),
                        savefig=f"imgs/collectKPattherAndShowChart_{limitSize}"
                    )
                    limitSize += 1
                    if (limitSize > 50):
                        break
                pass

            if yestodayIsMatch:

                pass
            preBar = bar
            yestodayIsMatch = todayIsMatch

        if (limitSize > 50):
            break

    pass
Пример #4
0
class SWDataSource(BarDataSource):
    def __init__(self, start: datetime, end: datetime):
        self.index = 0
        from earnmi.data.SWImpl import SWImpl
        self.sw = SWImpl()
        self.start = start
        self.end = end

    def nextBars(self) -> Tuple[Sequence['BarData'], str]:
        # if self.index > 2:
        #     return None,None
        sw_code_list = self.sw.getSW2List()
        if self.index < len(sw_code_list):
            code = sw_code_list[self.index]
            self.index += 1
            return self.sw.getSW2Daily(code, self.start, self.end), code
        return None, None
Пример #5
0
def crateHoldbarsImg():
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2019, 5, 1)
    end = datetime(2020, 8, 17)
    chart = Chart()
    for code in lists:
        bars = sw.getSW2Daily(code, start, end)
        # print(f"bar.size = {bars.__len__()}")

        indictor = kdj()
        chart.run(bars, indictor)

        holdBarList = indictor.getHoldBars()
        barList = utils.to_bars(holdBarList)

        chart.show(barList, item=indictor, savefig=f'imgs\\{code}.png')

        #print(f"code:{code},cost_pct = %.2f%%" % (total_cost_pct*100))
        break
Пример #6
0
from datetime import datetime

from earnmi.data.MarketImpl import MarketImpl
from earnmi.data.SWImpl import SWImpl
import time

sw = SWImpl()

swCode = sw.getSW2List()[0]

stockslist = sw.getSW2Stocks(swCode)

print(f"stockslist:{len(stockslist)}")

startDate = datetime(2015, 4, 1)
endDate = datetime(2020, 5, 1)
market = MarketImpl()
market.setToday(endDate)

market.addNotice('002852')
bars = market.getHistory().getKbars('002852', 300 * 3)

for code in stockslist:
    market.addNotice(code)
    print(f"getBars:{code}")
    bars = market.getHistory().getKbars(code, 300 * 3)
    #time.sleep(2)

    print(f"getBars size:{len(bars)}")
Пример #7
0
def findKPatternThatIn3Day(first_day_pct: float = 3, targe_pct=3):
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    dataSet = {}
    total_count = 0
    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        traceItems: ['TraceIn3DayItem'] = []
        for bar in barList:
            ###跟踪数据
            toDeleteList = []
            for traceItem in traceItems:
                traceItem.onTraceBar(bar)
                if traceItem.isFinished():
                    toDeleteList.append(traceItem)
                    if traceItem.isWanted():
                        ###归纳到统计里面
                        dataItem: CountItem = dataSet.get(traceItem.kPattern)
                        if dataItem is None:
                            dataItem = CountItem()
                            dataSet[traceItem.kPattern] = dataItem
                        pct = traceItem.current_sell_pct
                        total_count += 1
                        dataItem.count_total += 1
                        dataItem.pct_total += pct
                        if traceItem.isSuccess():
                            dataItem.count_earn += 1
                            dataItem.pct_earn += pct
                        pass
            for traceItem in toDeleteList:
                traceItems.remove(traceItem)

            indicator.update_bar(bar)
            kEncodeValue = KPattern.encode2KAgo1(indicator)
            if kEncodeValue is None:
                continue
            traceItem = TraceIn3DayItem(kEncodeValue, bar)
            traceItems.append(traceItem)

        ##打印当前形态
    occur_count = 0
    print(f"总共分析{total_count}个形态,识别出{len(dataSet)}个形态,有意义的形态有:")
    max_succ_rate = 0
    min_succ_rate = 100
    ret_list = []
    for key, dataItem in dataSet.items():
        success_rate = 100 * dataItem.count_earn / dataItem.count_total
        if dataItem.count_total < 300:
            continue
        if success_rate < 40:
            continue
        ret_list.append(key)
        if dataItem.count_earn > 0:
            earn_pct = dataItem.pct_earn / dataItem.count_earn
        else:
            earn_pct = 0

        avg_pct = dataItem.pct_total / dataItem.count_total
        occur_count += dataItem.count_total
        occur_rate = 100 * dataItem.count_total / total_count
        max_succ_rate = max(success_rate, max_succ_rate)
        min_succ_rate = min(success_rate, min_succ_rate)
        print(
            f"{key}: total={dataItem.count_total},suc=%.2f%%,occur_rate=%.2f%%,earn_pct:%.2f%%,avg_pct:%.2f%%)"
            % (success_rate, occur_rate, earn_pct, avg_pct))

    total_occur_rate = 100 * occur_count / total_count
    print(f"总共:occur_rate=%.2f%%, min_succ_rate=%.2f%%, max_succ_rate=%.2f%%" %
          (total_occur_rate, min_succ_rate, max_succ_rate))
    print(f"{ret_list}")
Пример #8
0
def printKPatterMoreDetail(kPatters=[
    535, 359, 1239, 1415, 1072, 712, 1412, 1240, 1413, 888, 2823, 706, 1414,
    1064
]):
    from vnpy.trader.constant import Exchange
    from vnpy.trader.constant import Interval
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    pct_split = [-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7]
    #pct_split = [-7, -5, -3, -1.0, 0, 1, 3, 5, 7]
    pct_split = [2]

    pctEncoder = FloatEncoder(pct_split)

    kPattersMap = {}
    for value in kPatters:
        kPattersMap[value] = True

    class InnerData(object):
        kValue: int  ##
        sell_disbute = np.zeros(pctEncoder.mask())  ##卖方力量分布情况
        buy_disbute = np.zeros(pctEncoder.mask())  #买方力量分布情况
        pass

    dataSet = {}
    occurDayMap = {}
    allTrayDay = 1

    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        traceItems: ['TraceIn3DayItem'] = []
        allTrayDay = max(allTrayDay, len(barList))

        for bar in barList:
            ###跟踪数据
            toDeleteList = []
            for traceItem in traceItems:
                traceItem.onTraceBar(bar)
                if traceItem.isFinished():
                    toDeleteList.append(traceItem)
                    if traceItem.isWanted():
                        occurBar = traceItem.firstBar
                        dayKey = occurBar.datetime.year * 13 * 35 + occurBar.datetime.month * 13 + occurBar.datetime.day
                        occurDayMap[dayKey] = True
                        ###归纳到统计里面
                        innerData: InnerData = dataSet.get(traceItem.kPattern)
                        if innerData is None:
                            innerData = InnerData()
                            innerData.kValue = traceItem.kPattern
                            dataSet[traceItem.kPattern] = innerData

                        sell_pct = traceItem.current_sell_pct
                        buy_pct = traceItem.current_buy_pct
                        innerData.buy_disbute[pctEncoder.encode(buy_pct)] += 1
                        innerData.sell_disbute[pctEncoder.encode(
                            sell_pct)] += 1
                        pass
            for traceItem in toDeleteList:
                traceItems.remove(traceItem)

            indicator.update_bar(bar)
            kEncodeValue = KPattern.encode2KAgo1(indicator)
            if kEncodeValue is None or kPattersMap.get(kEncodeValue) is None:
                continue
            traceItem = TraceIn3DayItem(kEncodeValue, bar)
            traceItems.append(traceItem)

    print(f"所有交易日中,有意义的k线形态出现占比:%.2f%%" %
          (100 * len(occurDayMap) / allTrayDay))
    for kValue, dataItem in dataSet.items():
        total_count1 = 0
        total_count2 = 0
        for cnt in dataItem.sell_disbute:
            total_count1 += cnt
        for cnt in dataItem.buy_disbute:
            total_count2 += cnt
        assert total_count1 == total_count2
        assert total_count1 > 0

        print(f"\n\nk:%6d, " % (kValue))

        print(f"   卖方价格分布:")
        for encode in range(0, len(dataItem.sell_disbute)):
            occurtRate = 100 * dataItem.sell_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

        print(f"   买方价格分布:")
        for encode in range(0, len(dataItem.buy_disbute)):
            occurtRate = 100 * dataItem.buy_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

    pass
Пример #9
0
def ganerateKPatternTrainData():
    class MyPattherCollector(KPatternCollector):
        # 收集指定的k线
        collectKPatternOnly = True
        KPattern: [] = [712]
        pct_split = [-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7]
        # pct_split = [-7, -5, -3, -1.0, 0, 1, 3, 5, 7]
        # pct_split = [-0.5,0.5]
        pctEncoder = FloatEncoder(pct_split)

        def __init__(self):
            self.kPattersMap = {}
            self.sw = SWImpl()
            self.dataSet = []
            for value in self.KPattern:
                self.kPattersMap[value] = True

        def onStart(self, code: str) -> bool:
            self.indicator = Indicator(40)
            self.traceCode = code
            self.traceName = self.sw.getSw2Name(code)
            return True

        """
        检查是否追踪某个k线形态,是的话,创建一个最终值对象。
        """

        def checkIfTrace(self, newBar: BarData) -> TraceIn3DayItem:
            self.indicator.update_bar(newBar)
            kEncodeValue = KPattern.encode2KAgo1(self.indicator)
            if kEncodeValue is None:
                return None
            if self.collectKPatternOnly and self.kPattersMap.get(
                    kEncodeValue) is None:
                return None
            return TraceIn3DayItem(kEncodeValue, newBar)

        def onTraceFinish(self, traceItem: TraceIn3DayItem):
            if traceItem.isWanted():
                ##收集数据。
                data = []
                data.append(self.traceCode)
                data.append(self.traceName)
                data.append(traceItem.kPattern)
                data.append(traceItem.first_buy_pct)
                data.append(traceItem.fisrt_sell_pct)
                data.append(traceItem.current_sell_pct)
                data.append(traceItem.current_buy_pct)
                self.dataSet.append(data)

        def onDestroy(self):
            import pandas as pd
            cloumns = [
                "code", "name", "kPattern", "buy_price", "sell_price",
                "label_sell_price", "label_buy_price"
            ]
            wxl = pd.DataFrame(self.dataSet, columns=cloumns)
            writer = pd.ExcelWriter('files/sw_train_data_sample.xlsx')
            wxl.to_excel(writer, sheet_name="sample", index=False)
            writer.save()
            writer.close()
            print(f"dataSize = {len(self.dataSet)}")

    collector: KPatternCollector = MyPattherCollector()
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    collector.onCreate()
    for code in lists:
        collector.onStart(code)
        barList = sw.getSW2Daily(code, start, end)
        traceItems = []
        for bar in barList:
            toDeleteList = []
            for traceItem in traceItems:
                traceItem.onTraceBar(bar)
                if traceItem.isFinished():
                    toDeleteList.append(traceItem)
                    collector.onTraceFinish(traceItem)
            for traceItem in toDeleteList:
                traceItems.remove(traceItem)
            traceItem = collector.checkIfTrace(bar)
            if traceItem is None:
                continue
            traceItems.append(traceItem)
        collector.onEnd(code)
    collector.onDestroy()
Пример #10
0
def generateSWTrainData(kPatterns: [], start: datetime,
                        end: datetime) -> pd.DataFrame:
    sw = SWImpl()
    lists = sw.getSW2List()
    cloumns = [
        "code", "name", "kPattern", "k", "d", "dif", "dea", "macd", "open",
        "short", "long"
    ]
    datas = []
    kPatternMap = {}
    for kPatternValues in kPatterns:
        kPatternMap[kPatternValues] = True

    macd_list = []

    for code in lists:
        # for code in lists:
        name = sw.getSw2Name(code)
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(34)
        preBar = None
        for bar in barList:
            ##先识别形态
            kEncodeValue = None
            if indicator.inited:
                tmpKEncodeValue = KPattern.encode3KAgo1(indicator)
                if kPatternMap.__contains__(tmpKEncodeValue):
                    kEncodeValue = tmpKEncodeValue
            if kEncodeValue is None:
                indicator.update_bar(bar)
                preBar = bar
                continue
            ##昨天的kdj
            k, d, j = indicator.kdj(array=False)
            dif, dea, macd = indicator.macd(fast_period=12,
                                            slow_period=26,
                                            signal_period=9,
                                            array=False)

            ##第二天的收益
            short_pct = 100 * ((bar.high_price + bar.close_price) / 2 -
                               preBar.close_price) / preBar.close_price
            long_pct = 100 * ((bar.low_price + bar.close_price) / 2 -
                              preBar.close_price) / preBar.close_price
            open_pct = 100 * (bar.open_price -
                              preBar.close_price) / preBar.close_price

            item = []
            item.append(code)
            item.append(name)
            item.append(kEncodeValue)
            item.append(k)
            item.append(d)
            item.append(dif)
            item.append(dea)
            item.append(macd)
            #下个k线数据
            item.append(open_pct)
            item.append(short_pct)
            item.append(long_pct)
            datas.append(item)

            macd_list.append(macd)

            indicator.update_bar(bar)
            preBar = bar
    macd_list = np.array(macd_list)
    print(
        f"total size : {len(datas)},mean ={macd_list.mean()},max={macd_list.max()},min={macd_list.min()}"
    )
    wxl = pd.DataFrame(datas, columns=cloumns)
    return wxl
Пример #11
0
def compute_SW_KEncode_parseAlgro1_split(
        pct_split=[-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7],
        extra_split=[1, 2, 3]):
    from earnmi.data.SWImpl import SWImpl
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    dataSet = {}

    pct_split = [-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7]
    extra_split = [0.5, 1.0, 1.5, 2.0, 2.5, 2.0]

    total_count = 0
    pct_code_count = np.zeros(len(pct_split) + 1)
    high_extra_pct_code_count = np.zeros(len(extra_split) + 1)
    low_extra_pct_code_count = np.zeros(len(extra_split) + 1)

    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None
        for i in range(0, len(barList)):
            bar = barList[i]
            indicator.update_bar(bar)

            if (i > 10):
                k_code, pct_code, high_extra_pct_code, low_extra_pct_code = KEncode.parseAlgro1(
                    indicator.close[-2], indicator.open[-1],
                    indicator.high[-1], indicator.low[-1], indicator.close[-1],
                    pct_split, extra_split)
                high_extra_pct_code_count[
                    high_extra_pct_code] = high_extra_pct_code_count[
                        high_extra_pct_code] + 1
                low_extra_pct_code_count[
                    low_extra_pct_code] = low_extra_pct_code_count[
                        low_extra_pct_code] + 1
                pct_code_count[pct_code] = pct_code_count[pct_code] + 1
                total_count += 1
            preBar = bar

        ##打印当前形态
    print(f"pct_split: {pct_split}")
    print(f"extra_split: {extra_split}")

    count_list = pct_code_count
    print(f"应该服从正太分布")
    print(f"\n:pct_code_count分布,avg = %.4f%%" % (100 / len(count_list)))
    for codeId in range(0, len(count_list)):
        item_count = count_list[codeId]
        item_occur_rate = 100 * item_count / total_count
        print(f"\t{codeId}: %.4f  %%   count:%d" %
              (item_occur_rate, item_count))

    count_list = high_extra_pct_code_count
    print(f"\n:high_extra_pct_code_count分布,avg = %.4f%%" %
          (100 / len(count_list)))
    for codeId in range(0, len(count_list)):
        item_count = count_list[codeId]
        item_occur_rate = 100 * item_count / total_count
        print(f"\t{codeId}: %.4f  %%   count:%d" %
              (item_occur_rate, item_count))

    count_list = low_extra_pct_code_count
    print(f"\n:low_extra_pct_code_count分布,avg = %.4f%%" %
          (100 / len(count_list)))
    for codeId in range(0, len(count_list)):
        item_count = count_list[codeId]
        item_occur_rate = 100 * item_count / total_count
        print(f"\t{codeId}: %.4f  %%   count:%d" %
              (item_occur_rate, item_count))
Пример #12
0
def compute_SW_KPattern_data():
    from earnmi.data.SWImpl import SWImpl
    from earnmi.chart.Chart import Chart, IndicatorItem, Signal
    sw = SWImpl()
    lists = sw.getSW2List()

    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    dataSet = {}

    total_count = 0
    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator()
        preBar = None
        for bar in barList:
            ##先识别形态
            rets = KPattern.matchIndicator(indicator)
            size = len(rets)
            if size > 0 and not preBar is None:
                """有形态识别出来
                """
                for item in rets:
                    name = item.name
                    value = item.value
                    total_count += 1
                    dataItem = None
                    if dataSet.__contains__(name):
                        dataItem = dataSet[name]
                    else:
                        dataItem = CountItem()
                        dataItem.values = []  ##形态被识别的值。
                        dataItem.pcts = []  ##识别之后第二天的盈利情况
                        dataSet[name] = dataItem
                    ##第二天的收益
                    short_pct = ((bar.high_price + bar.close_price) / 2 -
                                 preBar.close_price) / preBar.close_price
                    #long_pct = ((bar.high_price + bar.close_price) / 2 - preBar.close_price) / preBar.close_price

                    ###pct = (bar.close_price - preBar.close_price) / preBar.close_price

                    ##收录当前形态
                    dataItem.count_total += 1
                    dataItem.pct_total += short_pct
                    if short_pct > 0.000001:
                        dataItem.count_earn += 1
                        dataItem.pct_earn += short_pct
                    dataItem.values.append(value)
                    dataItem.pcts.append(short_pct)

                pass
            indicator.update_bar(bar)
            preBar = bar

    ##打印当前形态
    print(f"总共分析{total_count}个形态,识别出{len(dataSet)}个形态,有意义的形态有:")
    for key, dataItem in dataSet.items():
        if dataItem.count_total < 1000:
            continue
        success_rate = 100 * dataItem.count_earn / dataItem.count_total
        if abs(int(success_rate - 50)) < 5:
            continue
        values = np.array(dataItem.values)
        pcts = np.array(dataItem.pcts) * 100

        count = len(values)
        long_values = []
        short_value = []
        long_pcts = []
        long_ok_cnt = 0
        short_pcts = []
        short_ok_cnt = 0
        for i in range(0, count):
            v = values[i]
            if v > 0:
                long_values.append(v)
                long_pcts.append(pcts[i])
                if pcts[i] >= 0.000001:
                    long_ok_cnt = long_ok_cnt + 1
            else:
                short_value.append(v)
                short_pcts.append(pcts[i])
                if pcts[i] <= -10.000001:
                    short_ok_cnt = short_ok_cnt + 1
        long_values = np.array(long_values)
        short_value = np.array(short_value)
        long_pcts = np.array(long_pcts)
        short_pcts = np.array(short_pcts)

        long_pct = 0
        long_std = math.nan
        long_success = math.nan

        short_pct = 0
        short_std = math.nan
        short_success = math.nan
        if len(long_values) > 0:
            long_pct = long_pcts.mean()
            long_std = long_pcts.std()
            long_success = long_ok_cnt / len(long_values)

        if len(short_value) > 0:
            short_pct = short_pcts.mean()
            short_std = short_pcts.std()
            short_success = short_ok_cnt / len(short_value)

        print(
            f"{key}: count={count},suc_reate=%.2f%%,long(size:{len(long_values)},suc=%.2f%%,pcts:%.2f%%,std=%.2f),short(size:{len(short_value)},suc=%.2f%%,pcts:%.2f%%,std=%.2f)"
            % (success_rate, long_success * 100, long_pct, long_std,
               short_success * 100, short_pct, short_std))

    print("-----------具体情况-----------")
    outputKeys = ["CDLADVANCEBLOCK"]
    for key in outputKeys:
        dataItem = dataSet[key]
        values = np.array(dataItem.values)
        pcts = np.array(dataItem.pcts) * 100
        count = len(dataItem.values)
        print(
            f"{key}: count={count},values:{values.mean()},pcts:%.2f%%,pcts_std=%.2f"
            % (pcts.mean(), pcts.std()))

        itemSize = 10
        size = int(count / itemSize)
        if count % itemSize > 0:
            size = size + 1
        for i in range(0, size):
            lineStr = ""
            start = itemSize * i
            end = min(start + itemSize, count)
            for j in range(start, end):
                lineStr = lineStr + (f" %4d->%.2f%%," % (values[j], pcts[j]))
            print(lineStr)
Пример #13
0
def printKPatterMoreDetail(kPatters=[
    6, 3, 17, 81, 7, 5, 4, 82, 159, 16, 28, 83, 15, 84, 18, 27, 93, 104, 158,
    92, 160, 236, 157, 94, 85, 80, 14, 8, 161, 9, 29, 170, 26, 19, 38, 2, 79
]):
    from earnmi.data.SWImpl import SWImpl
    from vnpy.trader.constant import Exchange
    from vnpy.trader.constant import Interval
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    pct_split = [-7, -5, -3, -1.5, -0.5, 0.5, 1.5, 3, 5, 7]
    pct_split = [-7, -5, -3, -1.0, 0, 1, 3, 5, 7]
    pct_split = [-0.5, 0.5]

    pctEncoder = FloatEncoder(pct_split)

    kPattersMap = {}
    for value in kPatters:
        kPattersMap[value] = True

    class InnerData(object):
        kValue: int  ##
        sell_disbute = np.zeros(pctEncoder.mask())  ##卖方力量分布情况
        buy_disbute = np.zeros(pctEncoder.mask())  #买方力量分布情况
        pass

    dataSet = {}
    occurDayMap = {}
    allTrayDay = 1
    for code in lists:
        # for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None

        previousIsMatch = False
        previousPatternVaule = None
        allTrayDay = max(allTrayDay, len(barList))
        for i in range(0, len(barList)):
            bar = barList[i]
            indicator.update_bar(bar)
            patternValue = KPattern.encode1KAgo1(indicator)
            todayIsMatch = False
            if not patternValue is None:
                todayIsMatch = kPattersMap.__contains__(patternValue)

            if todayIsMatch:
                dayKey = bar.datetime.year * 13 * 35 + bar.datetime.month * 13 + bar.datetime.day
                occurDayMap[dayKey] = True
                pass

            if previousIsMatch:
                innerData: InnerData = dataSet.get(previousIsMatch)
                if innerData is None:
                    innerData = InnerData()
                    innerData.kValue = previousIsMatch
                    dataSet[previousPatternVaule] = innerData

                sell_pct = 100 * ((bar.high_price + bar.close_price) / 2 -
                                  preBar.close_price) / preBar.close_price
                buy_pct = 100 * ((bar.low_price + bar.close_price) / 2 -
                                 preBar.close_price) / preBar.close_price
                innerData.buy_disbute[pctEncoder.encode(buy_pct)] += 1
                innerData.sell_disbute[pctEncoder.encode(sell_pct)] += 1

                pass
            preBar = bar
            previousIsMatch = todayIsMatch
            previousPatternVaule = patternValue

    print(f"所有交易日中,有意义的k线形态出现占比:%.2f%%" %
          (100 * len(occurDayMap) / allTrayDay))

    for kValue, dataItem in dataSet.items():
        total_count1 = 0
        total_count2 = 0
        for cnt in dataItem.sell_disbute:
            total_count1 += cnt
        for cnt in dataItem.buy_disbute:
            total_count2 += cnt
        assert total_count1 == total_count2
        assert total_count1 > 0

        print(f"\n\nk:%6d, " % (kValue))

        print(f"   卖方价格分布:")
        for encode in range(0, len(dataItem.sell_disbute)):
            occurtRate = 100 * dataItem.sell_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

        print(f"   买方价格分布:")
        for encode in range(0, len(dataItem.buy_disbute)):
            occurtRate = 100 * dataItem.buy_disbute[encode] / total_count1
            print(f"   {pctEncoder.descriptEncdoe(encode)}:%.2f%%" %
                  (occurtRate))

    pass
Пример #14
0
def compute_SW_KEncode_data():
    from earnmi.data.SWImpl import SWImpl
    sw = SWImpl()
    lists = sw.getSW2List()
    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)
    dataSet = {}
    total_count = 0
    occurKPattenDayMap = {}
    kBarListTotalDay = 0
    for code in lists:
        #for code in lists:
        barList = sw.getSW2Daily(code, start, end)
        indicator = Indicator(40)
        preBar = None
        kBarListTotalDay = len(barList)
        for bar in barList:
            ##先识别形态
            kEncodeValue = KPattern.encode1KAgo1(indicator)
            if kEncodeValue is None:
                indicator.update_bar(bar)
                preBar = bar
                continue
            total_count += 1
            dataItem: CountItem = None
            if dataSet.__contains__(kEncodeValue):
                dataItem = dataSet[kEncodeValue]
            else:
                dataItem = CountItem()
                dataSet[kEncodeValue] = dataItem
            ##第二天的收益
            pct = ((bar.high_price + bar.close_price) / 2 -
                   preBar.close_price) / preBar.close_price
            ##收录当前形态
            #dataItem.values.append(value)
            dataItem.count_total += 1
            dataItem.pct_total += pct
            if pct > 0.000001:
                dataItem.count_earn += 1
                dataItem.pct_earn += pct
            indicator.update_bar(bar)
            preBar = bar

            occurDayKey = preBar.datetime.year * 13 * 35 + preBar.datetime.month * 35 + preBar.datetime.day
            occurKPattenDayMap[occurDayKey] = True

        ##打印当前形态
    occur_count = 0
    print(f"总共分析{total_count}个形态,识别出{len(dataSet)}个形态,有意义的形态有:")
    max_succ_rate = 0
    min_succ_rate = 100
    ret_list = []
    for key, dataItem in dataSet.items():
        success_rate = 100 * dataItem.count_earn / dataItem.count_total
        if dataItem.count_total < 500:
            continue
        if abs(int(success_rate - 50)) < 10:
            continue
        ret_list.append(key)
        earn_pct = 100 * dataItem.pct_earn / dataItem.count_earn
        if success_rate < 50:
            earn_pct = 100 * (dataItem.pct_total - dataItem.pct_earn) / (
                dataItem.count_total - dataItem.count_earn)
        avg_pct = 100 * dataItem.pct_total / dataItem.count_total
        occur_count += dataItem.count_total
        occur_rate = 100 * dataItem.count_total / total_count
        max_succ_rate = max(success_rate, max_succ_rate)
        min_succ_rate = min(success_rate, min_succ_rate)
        print(
            f"{key}: total={dataItem.count_total},suc=%.2f%%,occur_rate=%.2f%%,earn_pct:%.2f%%,avg_pct:%.2f%%)"
            % (success_rate, occur_rate, earn_pct, avg_pct))

    total_occur_rate = 100 * occur_count / total_count
    total_occur_in_day_rate = 100 * len(
        occurKPattenDayMap) / kBarListTotalDay  ##在所有交易日中,k线形态日出占比:
    print(f"总共:occur_rate=%.2f%%, min_succ_rate=%.2f%%, max_succ_rate=%.2f%%"
          f"\n所有交易日中,k线形态日出占比:%.2f%%" %
          (total_occur_rate, min_succ_rate, max_succ_rate,
           total_occur_in_day_rate))
    print(f"{ret_list}")
Пример #15
0
if __name__ == "__main__":
    import pickle
    from earnmi.model.CoreEngineImpl import CoreEngineImpl
    from earnmi.data.SWImpl import SWImpl

    def saveCollectData(bars: []):

        fileName = "files/testSaveCollectData.bin"
        with open(fileName, 'wb') as fp:
            pickle.dump(bars, fp, -1)

    def loadCollectData():
        bars = None
        fileName = "files/testSaveCollectData.bin"
        with open(fileName, 'rb') as fp:
            bars = pickle.load(fp)
        return bars

    start = datetime(2014, 5, 1)
    end = datetime(2020, 8, 17)

    sw = SWImpl()

    code = sw.getSW2List()[3]
    bars = sw.getSW2Daily(code, start, end)
    #saveCollectData(bars)
    bars2 = loadCollectData()

    assert bars == bars2
    assert len(bars) == len(bars2) and len(bars2) != 0
Пример #16
0

start = datetime(2014, 5, 1)
end = datetime(2020, 8, 17)
# code = "600196"
#
#
# market = MarketImpl()
# market.addNotice(code)
# market.setToday(end)
#
#
# bars = market.getHistory().getKbarFrom(code,start)

sw = SWImpl()
lists = sw.getSW2List()
chart = Chart()

for code in lists:
    bars = sw.getSW2Daily(code, start, end)
    print(f"bar.size = {bars.__len__()}")
    item = AroonItem()
    chart.run(bars, item)

    print(f"holdbars = {len(item.getHoldBars())}")

    barList = []
    close_price = None
    for holdBar in item.getHoldBars():
        if close_price is None:
            barList.append(holdBar.toBarData())
Пример #17
0
def computeHoldBarIndictor(indictor:IndicatorItem)->HoldBarData:
    sw = SWImpl()
    lists = sw.getSW2List()
    chart = Chart()
    total_cost_pcts = []#收益
    avg_eran_cost_pcts = []#每个盈利holdbard的平均盈利

    total_days = []
    total_eran_days = []
    total_holdbars = []
    total_holdbars_earn = []
    max_cost_pcts =[]   #最大收益
    min_cost_pcts = []

    for code in lists:

        if len(sw.getSW2Stocks(code)) < 10:
            continue

        bars = sw.getSW2Daily(code, start, end)
        #print(f"bar.size = {bars.__len__()}")
        chart.run(bars, indictor)
        holdbarList = indictor.getHoldBars()

        #holdbarList = HoldBarUtils.filterHoldBar(holdbarList)

        data = HoldBarUtils.computeHoldBarIndictor(holdbarList);

        if data is None:
            continue

        total_cost_pcts.append(data.total_cost_pct)
        max_cost_pcts.append(data.max_cost_pct)
        min_cost_pcts.append(data.min_cost_pct)
        total_days.append(data.total_day)
        total_holdbars.append(data.total_holdbar)
        total_holdbars_earn.append(data.total_holdbar_earn)
        avg_eran_cost_pcts.append(data.avg_eran_cost_pct)
        total_eran_days.append(data.total_earn_day)


    ret = HoldBarData()

    total_cost_pcts = np.array(total_cost_pcts)
    total_days = np.array(total_days)
    max_cost_pcts = np.array(max_cost_pcts)
    min_cost_pcts = np.array(min_cost_pcts)
    total_holdbars = np.array(total_holdbars)
    total_holdbars_earn = np.array(total_holdbars_earn)
    avg_eran_cost_pcts = np.array(avg_eran_cost_pcts)
    total_eran_days = np.array(total_eran_days)



    ret.total_min_cost_pct = total_cost_pcts.min()
    ret.total_max_cost_pct = total_cost_pcts.max()
    ret.total_cost_pct = total_cost_pcts.mean()
    ret.total_cost_pct_std = np.std(total_cost_pcts)
    ret.total_day = total_days.mean()
    ret.max_cost_pct = max_cost_pcts.mean()
    ret.min_cost_pct = min_cost_pcts.mean()
    ret.total_holdbar = total_holdbars.mean()
    ret.total_holdbar_earn = total_holdbars_earn.mean()
    ret.avg_eran_cost_pct = avg_eran_cost_pcts.mean()
    ret.total_earn_day = total_eran_days.mean()

    return ret