Пример #1
0
def retrieve_from_mars(notification):
    print(f"Notification for step {notification['request']['step']} received")
    # now do a MARS request with this notification...
    mars_server = ECMWFService("mars")
    request = notification['request']
    # extend the notification with the attributes needed
    request.update({
        "type": "fc",
        "levtype": "sfc",
        "param": 167.128,
        "area": "75/-20/10/60"
    })
    mars_server.execute(request, "my_data.grib")
def download_forecast(date, hours=11):
    """
    Downloads forecast data starting from the given time stamp.

    Files are stored to disk in 'ecmwf_YYYY-MM-DDTHH_XXh.nc' format.
    YYYY-MM-DDTHH - forecast start date
    XX            - number of hours

    :arg date: a datetime object, e.g. datetime(2019, 5, 1, 12)
    :kwarg int hours: number of hourly steps to download, e.g. 12
    """
    with open('mars-credentials.json', 'r') as f:
        d = json.load(f)
        key = d['key']
        email = d['email']

    server = ECMWFService('mars',
                          url='https://api.ecmwf.int/v1',
                          key='80b00604dbf257efd28aa352edb70e32',
                          email='*****@*****.**')

    step_str = '/'.join(map(str, numpy.arange(int(hours + 1))))
    output_file = 'ecmwf_{:%Y-%m-%dT%H}_{:02d}h.nc'.format(date, hours)
    request = {
        'class': 'od',
        'date': date.strftime('%Y-%m-%d'),
        'expver': '73',
        'levtype': 'sfc',
        'param':
        '134.128/144.128/165.128/166.128/167.128/168.128/169.128/175.128/228.128',
        'step': step_str,
        'stream': 'oper',
        'area': '66/-5/48/31',
        'grid': '0.20689655172413793/0.1125',
        'format': 'netcdf',
        'time': date.strftime('%H:%M:%S'),
        'type': 'fc',
    }
    # download to tmp file
    tmpfile = 'tmp_' + output_file
    server.execute(request, tmpfile)
    # copy to convert all variables to float datatype
    concat_netcdf_files([tmpfile],
                        output_file,
                        rm_source_files=True,
                        verbose=False)
    # deaccumulate accumulated fields
    deaccumulate_fields(output_file, ['ssrd', 'strd', 'tp', 'sf'])
    # compute specific humidity
    compute_specific_humidity(output_file)
    return output_file
#!/usr/bin/env python
from ecmwfapi import ECMWFService
import calendar
  
server = ECMWFService("mars")
for year in range(1982, 2018):
	#Select year for data extraction
	print ('YEAR ',year)
	initmonth=8
	initbdate="%s%02d01"%(year,initmonth)
	print ("######### ERA-interim  #########")
	print ('get data from ', initbdate)
	print ("################################")		

	server.execute({
		'class'   : "od",
		'step'    : "2904/to/5160/by/24",
		'number'  : "0/to/50",   
		'levtype' : "sfc",
		'expver'  : "1",
		'method'  : "1",
		'origin'  : "ecmf",    
		'date'    : "%s"%(initbdate), 
		'time'    : "00:00:00",   
		'type'    : "fc",
		'param'   : "34.128", 
		'stream'  : "mmsf",
		'system'  : "4",
		'grid'    : "128"},
		 "/storage/silver/acrcc/vg140344/HGT_S4Hindcasts_0108_SST_24Hourly_%s.grib"%(initbdate))
Пример #4
0
from ecmwfapi import ECMWFService
import pandas as pd

server = ECMWFService("mars")

date_end = pd.date_range(start='2012-01-01', end='2020-01-01', freq='M')
date_start = pd.date_range(start='2012-01-01', end='2019-12-02', freq='MS')

for x, y in zip(date_start, date_end):
    date = x.strftime('%Y-%m-%d') + '/to/' + y.strftime('%Y-%m-%d')
    datestemp = date[14:21]
    target = 'Ctrl6_%s.nc' % (datestemp)
    server.execute(
        {
            "class": "od",
            "stream": "enfo",
            "expver": "1",
            "type": "cf",
            "levtype": "sfc",
            "time": "00",
            "step": "6",
            "date": date,
            "param": "228.128",
            "grid": "0.25/0.25",
            "format": "netcdf",
        }, target)
    step, output = pair
    request = {
        "class": "od",
        "date": '2018-02-01/to/2018-04-01',
        "expver": 1,
        "grid": "0.125/0.125",
        "resol": "av",
        "area": "90/-180/40/180",
        "levtype": "sfc",
        "param": "10u/10v/2t/2d/tcc/tp/msl/ssrd/strd/sf",
        "step": step,
        "stream": "oper",
        "time": "00",
        "type": "fc",
        "format": "netcdf",
    }
    print(json.dumps(request, indent=4))
    print('Output file: %s' % output)
    server.execute(request, output)


server = ECMWFService('mars')
pairs = [
    ("0/to/21/by/3", 'legacy_201803_3h.1.nc'),
    ("24/to/45/by/3", 'legacy_201803_3h.2.nc'),
    ("48/to/69/by/3", 'legacy_201803_3h.3.nc'),
    ("72/to/93/by/3", 'legacy_201803_3h.4.nc'),
]
p = Pool(4)
p.map(download, pairs)
Пример #6
0
To find observations online:

Mars Catalogue / Operational Archive / Atmospheric Model / 1 / Observations-Observations / Year / Month / Conventional Data / 

select day, time and observation type (scroll to Synop)
'''

import os
import datetime as dt
import calendar
import numpy as np

from ecmwfapi import ECMWFService

server = ECMWFService("mars")  # want the MARS archive

# JASMIN group work space
GWS = "/group_workspaces/jasmin2/c3s311a_lot2/data/incoming/"
outdir = "mars/"
version = "v20170628/"
"""
OBSTYPE:

https://software.ecmwf.int/wiki/display/UDOC/Identification+keywords#Identificationkeywords-obstype

Land surface and sea surface data types are:
LSD - 1/2/3/4/140/
SSD - 9/11/12/13/14/19/20/21/22/23/

Liz Kent said not to worry about Reduced COADS data - #20
Пример #7
0
# parameters
# phis/lnps/tmp/spfh/ugrd/vgrd/o3mr
# "129/152/130/133/131/132/203"

# number of vertical levels.
nlevs = 137
levelist = []
for nlev in range(1, nlevs + 1):
    levelist.append('%s/' % nlev)
levelist137 = ''.join(levelist)[:-1]

# output grid
grid = 'F400'  # 800 latitude gaussian grid. F1280,F640 also supported.

# get data one date and field at a time.
server = ECMWFService('mars')
for date in daterange(date1, date2, hrinc):
    yyyy, mm, dd, hh = splitdate(date)
    print "requesting 2d fields for %s ...." % date
    server.execute(
        {
            'stream': "oper",
            'class': "od",
            'expver': "69",
            'levtype': "ml",
            'type': "an",
            'param': "129/152",
            'date': "%04i-%02i-%02i" % (yyyy, mm, dd),
            'time': "%02i" % hh,
            'type': "an",
            'levelist': "1",
Пример #8
0
#!/usr/bin/env python
from ecmwfapi import ECMWFService
import calendar
  
server = ECMWFService("mars")

for year in [1981, 1982, 2017]:
	#Select year for data extraction
	print ('YEAR ',year)
	
	initmonth=11
	initbdate="%s%02d01"%(year,initmonth)
	print ("######### ERA-interim  #########")
	print ('get data from ', initbdate)
	print ("################################")		

	server.execute({
		'class'   : "od",
		'levelist': "200",
		'step'    : "0/to/2928/by/24",
		'number'  : "0/to/50",   
		'levtype' : "pl",
		'expver'  : "1",
		'method'  : "1",
		'origin'  : "ecmf",    
		'date'    : "%s"%(initbdate), 
		'time'    : "00:00:00",   
		'type'    : "fc",
		'param'   : "129.128", 
		'stream'  : "mmsf",
		'system'  : "4",
Пример #9
0
#!/usr/bin/env python3

from ecmwfapi import ECMWFService

server = ECMWFService("mars")

for month in [11, 12, 1, 2, 3]:
    for year in range(1981, 2020):
        print(f"Retrieving SEAS5, year = {year}, init_date = {month}")

        start_date = f"{year}-{month:02}-01"

        server.execute(
            {
                "class": "od",
                "levelist": "500",
                "step": "0/to/3648/by/24",
                "number": "0",
                "levtype": "pl",
                "expver": "1",
                "method": "1",
                "origin": "ecmf",
                "date": start_date,
                "time": "00:00:00",
                "type": "fc",
                "param": "131",
                "stream": "mmsf",
                "system": "5",
                "grid": "128",
                "format": "netcdf",
            },
    def pull(self, archive, product):
        from ecmwfapi import ECMWFDataServer, ECMWFService
        dataserver = ECMWFDataServer(log=logging.info)
        marsservice = ECMWFService("mars", log=logging.info)

        if getattr(product.core, "archive_path", None) is None:
            raise Error("cannot pull files that do not have archive_path set")

        # Determine the (absolute) path in the archive that will contain the product and create it if required.
        abs_archive_path = os.path.realpath(
            os.path.join(archive._root, product.core.archive_path))
        abs_product_path = os.path.join(abs_archive_path,
                                        product.core.physical_name)

        # Create destination location for product
        try:
            util.make_path(abs_archive_path)
        except EnvironmentError as _error:
            raise Error("cannot create parent destination path '%s' [%s]" %
                        (abs_archive_path, _error))

        requests = []
        for order in product.core.remote_url.split('?')[1].split(
                '&concatenate&'):
            request = {}
            for param in order.split('&'):
                key, value = param.split('=')
                request[key] = value
            requests.append(request)

        plugin = archive.product_type_plugin(product.core.product_type)

        # Create a temporary directory and download the product there, then move the product to its
        # destination within the archive.
        try:
            with util.TemporaryDirectory(prefix=".pull-",
                                         suffix="-%s" % product.core.uuid.hex,
                                         dir=abs_archive_path) as tmp_path:

                # Create enclosing directory if required.
                if plugin.use_enclosing_directory:
                    tmp_path = os.path.join(tmp_path,
                                            product.core.physical_name)
                    util.make_path(tmp_path)

                # Download product.
                tmp_file_combined = os.path.join(tmp_path,
                                                 product.core.physical_name)
                tmp_file_download = os.path.join(tmp_path, "request.grib")
                combined_file = open(tmp_file_combined, "w")
                for request in requests:
                    if 'dataset' in request:
                        request['target'] = tmp_file_download
                        dataserver.retrieve(request)
                    else:
                        marsservice.execute(request, tmp_file_download)
                    result_file = open(tmp_file_download, "r")
                    combined_file.write(result_file.read())
                    result_file.close()
                    os.remove(tmp_file_download)
                combined_file.close()

                # Move the retrieved product into its destination within the archive.
                if plugin.use_enclosing_directory:
                    os.rename(tmp_path, abs_product_path)
                else:
                    os.rename(tmp_file_combined, abs_product_path)

        except EnvironmentError as _error:
            raise Error(
                "unable to transfer product to destination path '%s' [%s]" %
                (abs_product_path, _error))
#!/usr/bin/env python
from ecmwfapi import ECMWFService
import calendar
  
server = ECMWFService("mars")

for year in range(1981, 2018):
	#Select year for data extraction
	print ('YEAR ',year)
	initmonth = 8
	initbdate = "%s%02d01"%(year,initmonth)
	print ("######### ERA-interim  #########")
	print ('get data from ', initbdate)
	print ("################################")		

	server.execute({
		'class'   : "od",
		'levelist': "1/2/5/10/20/30/50/70/100/150/200/250/300/400/500/700/850/925/1000",
		'fcmonth' : "1/2/3/4/5/6/7",
		'number'  : "0/to/50",   
		'levtype' : "pl",
		'expver'  : "1",
		'method'  : "1",
		'origin'  : "ecmf",    
		'date'    : "%s"%(initbdate), 
		'time'    : "00:00:00",   
		'type'    : "fcmean",
		'param'   : "129.128", 
		'stream'  : "msmm",
		'system'  : "4",
		'grid'    : "128",},
#!/usr/bin/env python
from ecmwfapi import ECMWFService
import calendar

server = ECMWFService("mars")

for year in range(1982, 2018):
    #Select year for data extraction
    print('YEAR ', year)
    initmonth = 8
    initbdate = "%s%02d01" % (year, initmonth)
    print("######### ERA-interim  #########")
    print('get data from ', initbdate)
    print("################################")

    server.execute(
        {
            'class': "od",
            'levelist': "50",
            'step': "0/to/5160/by/24",
            'number': "0/to/50",
            'levtype': "pl",
            'expver': "1",
            'method': "1",
            'origin': "ecmf",
            'date': "%s" % (initbdate),
            'time': "00:00:00",
            'type': "fc",
            'param': "131/132",
            'stream': "mmsf",
            'system': "4",
Пример #13
0
#!/usr/bin/env python
from ecmwfapi import ECMWFService

server = ECMWFService("mars",
                      url="https://api.ecmwf.int/v1",
                      key="9182bc70a68dd50cee8ee720d3d69bc8",
                      email="*****@*****.**")
# To run this example, you need an API key
# available from https://api.ecmwf.int/v1/key/

server.execute({
    'class': 'od',
    'stream': 'oper',
    'grid': '1/1',
    'param': 't'
},
               target='t.grib')
Пример #14
0
## PARA DADOS EM NÍVEL DE SUPERFÍCIE
#imports
import pandas as pd
from datetime import datetime, timedelta
from ecmwfapi import ECMWFService
#fazendo um range para se colocar às datas selecionadas
date_range = pd.date_range(start='20210801', end='20210801',
                           freq="D").strftime('%Y%m%d').to_list()
for dates in date_range:
    server = ECMWFService("mars",
                          url="https://api.ecmwf.int/v1",
                          key="60f7f41f253aef87cd57738132d2e634",
                          email="*****@*****.**")
    server.execute(
        {
            "class": "od",
            "date":
            dates,  #pode remover esse range e usar dada como 20160101/to/20160102
            "expver": "1",
            "levtype": "sfc",
            "number": "0/1/2/3/4/5/6/7/8/9/10/11/12/13/14",
            "param": "228.128",  #Buscar parâmetro da variável no catálogo
            "grid": "0.2/0.2",  #tamanho da grade
            "step": "all",  #step de horas
            "area": "-25.0/-54.4/-26.8/-49.0",  #lat/lon
            "stream": "mmsf",
            "time": "00",  #rodada
            "type": "fc",
            "target": "data.grib2"
        },
        "../Dados/ECMWF_Grib/teste_ECMWF_anual.grib2")
Пример #15
0
levelist = []
for nlev in range(1, nlevs + 1):
    levelist.append('%s/' % nlev)
levelist137 = ''.join(levelist)[:-1]

# output grid
#grid = '0.075/0.075' # lat/lon spacing
grid = 'F640'  # 1280 latitude gaussian grid

#parameters="phis/lnps/tmp/spfh/ugrd/vgrd/clwmr/icwmr/rnwmr/snwmr/vvel"
#parameters="129/152/130/133/131/132/246/247/75/76/135"
# phis/lnps/tmp/spfh/ugrd/vgrd/o3mr
parameters = "129/152/130/133/131/132/203"

# get data one date at a time, all fields at once.
server = ECMWFService('mars')

yyyy, mm, dd, hh = splitdate(date)
print "requesting fields for %s ...." % date
server.execute(
    {
        'stream': "oper",
        'class': "od",
        'expver': "1",
        'levtype': "ml",
        'type': "an",
        'param': "%s" % parameters,
        'date': "%04i-%02i-%02i" % (yyyy, mm, dd),
        'time': "%02i" % hh,
        'levelist': "%s" % levelist137,
        'format': "netcdf",
Пример #16
0
from ecmwfapi import ECMWFService
import pandas as pd

server = ECMWFService("mars")

date_end = pd.date_range(start='2012-01-01', end='2020-01-01', freq='M')
date_start = pd.date_range(start='2012-01-01', end='2019-12-02', freq='MS')

for x, y in zip(date_start, date_end):
    date = x.strftime('%Y-%m-%d') + '/to/' + y.strftime('%Y-%m-%d')
    datestemp = date[14:21]
    target = 'Prtl6_%s.nc' % (datestemp)
    server.execute(
        {
            "class": "od",
            "stream": "enfo",
            "expver": "1",
            "type": "pf",
            "levtype": "sfc",
            "number":
            "1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22/23/24/25/26/27/28/29/30/31/32/33/34/35/36/37/38/39/40/41/42/43/44/45/46/47/48/49/50",
            "time": "00",
            "step": "6",
            "date": date,
            "param": "228.128",
            "grid": "0.25/0.25",
            "format": "netcdf",
        }, target)