Пример #1
0
    def test_warm_start(self, ):
        n_features = 2
        n = 100
        random_state = 123
        X, y, _ = self._get_regression_data(n, n_features, random_state)

        for inference in [True, False]:
            forest = RegressionForest(n_estimators=4,
                                      inference=inference,
                                      warm_start=True,
                                      random_state=123).fit(X, y)
            forest.n_estimators = 8
            forest.fit(X, y)
            pred1 = forest.predict(X)
            inds1 = forest.get_subsample_inds()
            tree_states1 = [t.random_state for t in forest]

            forest = RegressionForest(n_estimators=8,
                                      inference=inference,
                                      warm_start=True,
                                      random_state=123).fit(X, y)
            pred2 = forest.predict(X)
            inds2 = forest.get_subsample_inds()
            tree_states2 = [t.random_state for t in forest]

            np.testing.assert_allclose(pred1, pred2)
            np.testing.assert_allclose(inds1, inds2)
            np.testing.assert_allclose(tree_states1, tree_states2)
        return
Пример #2
0
    def test_var(self,):
        # test that the estimator calcualtes var correctly
        config = self._get_base_config()
        config['honest'] = True
        config['max_depth'] = 0
        config['inference'] = True
        config['n_estimators'] = 1000
        config['subforest_size'] = 2
        config['max_samples'] = .5
        config['n_jobs'] = 1
        n_features = 2
        # test api
        n = 100
        random_state = 123
        X, y, truth = self._get_regression_data(n, n_features, random_state)
        forest = RegressionForest(**config).fit(X, y)
        alpha = .1
        mean, var = forest.predict_and_var(X)
        lb = scipy.stats.norm.ppf(alpha / 2, loc=mean[:, 0], scale=np.sqrt(var[:, 0, 0])).reshape(-1, 1)
        ub = scipy.stats.norm.ppf(1 - alpha / 2, loc=mean[:, 0], scale=np.sqrt(var[:, 0, 0])).reshape(-1, 1)

        np.testing.assert_allclose(var, forest.predict_var(X))
        lbtest, ubtest = forest.predict_interval(X, alpha=alpha)
        np.testing.assert_allclose(lb, lbtest)
        np.testing.assert_allclose(ub, ubtest)
        meantest, lbtest, ubtest = forest.predict(X, interval=True, alpha=alpha)
        np.testing.assert_allclose(mean, meantest)
        np.testing.assert_allclose(lb, lbtest)
        np.testing.assert_allclose(ub, ubtest)
        np.testing.assert_allclose(np.sqrt(var[:, 0, 0]), forest.prediction_stderr(X)[:, 0])

        # test accuracy
        for n in [10, 100, 1000, 10000]:
            random_state = 123
            X, y, truth = self._get_regression_data(n, n_features, random_state)
            forest = RegressionForest(**config).fit(X, y)
            our_mean, our_var = forest.predict_and_var(X[:1])
            true_mean, true_var = np.mean(y), np.var(y) / y.shape[0]
            np.testing.assert_allclose(our_mean, true_mean, atol=0.05)
            np.testing.assert_allclose(our_var, true_var, atol=0.05, rtol=.1)
        for n, our_thr, true_thr in [(1000, .5, .25), (10000, .05, .05)]:
            random_state = 123
            config['max_depth'] = 1
            X, y, truth = self._get_step_regression_data(n, n_features, random_state)
            forest = RegressionForest(**config).fit(X, y)
            posX = X[X[:, 0] > our_thr]
            negX = X[X[:, 0] < -our_thr]
            our_pos_mean, our_pos_var = forest.predict_and_var(posX)
            our_neg_mean, our_neg_var = forest.predict_and_var(negX)
            pos = X[:, 0] > true_thr
            true_pos_mean, true_pos_var = np.mean(y[pos]), np.var(y[pos]) / y[pos].shape[0]
            neg = X[:, 0] < -true_thr
            true_neg_mean, true_neg_var = np.mean(y[neg]), np.var(y[neg]) / y[neg].shape[0]
            np.testing.assert_allclose(our_pos_mean, true_pos_mean, atol=0.07)
            np.testing.assert_allclose(our_pos_var, true_pos_var, atol=0.0, rtol=.25)
            np.testing.assert_allclose(our_neg_mean, true_neg_mean, atol=0.07)
            np.testing.assert_allclose(our_neg_var, true_neg_var, atol=0.0, rtol=.25)
        return
Пример #3
0
 def test_non_standard_input(self,):
     # test that the estimator accepts lists, tuples and pandas data frames
     n_features = 2
     n = 100
     random_state = 123
     X, y, truth = self._get_regression_data(n, n_features, random_state)
     forest = RegressionForest(n_estimators=20, n_jobs=1, random_state=123).fit(X, y)
     pred = forest.predict(X)
     forest = RegressionForest(n_estimators=20, n_jobs=1, random_state=123).fit(tuple(X), tuple(y))
     np.testing.assert_allclose(pred, forest.predict(tuple(X)))
     forest = RegressionForest(n_estimators=20, n_jobs=1, random_state=123).fit(list(X), list(y))
     np.testing.assert_allclose(pred, forest.predict(list(X)))
     forest = RegressionForest(n_estimators=20, n_jobs=1, random_state=123).fit(pd.DataFrame(X), pd.DataFrame(y))
     np.testing.assert_allclose(pred, forest.predict(pd.DataFrame(X)))
     forest = RegressionForest(n_estimators=20, n_jobs=1, random_state=123).fit(
         pd.DataFrame(X), pd.Series(y.ravel()))
     np.testing.assert_allclose(pred, forest.predict(pd.DataFrame(X)))
     return
Пример #4
0
    def test_pickling(self,):

        n_features = 2
        n = 10
        random_state = 123
        X, y, _ = self._get_regression_data(n, n_features, random_state)

        forest = RegressionForest(n_estimators=4, warm_start=True, random_state=123).fit(X, y)
        forest.n_estimators = 8
        forest.fit(X, y)
        pred1 = forest.predict(X)

        joblib.dump(forest, 'forest.jbl')
        loaded_forest = joblib.load('forest.jbl')
        np.testing.assert_equal(loaded_forest.n_estimators, forest.n_estimators)
        np.testing.assert_allclose(loaded_forest.predict(X), pred1)
def monte_carlo():
    n = 5000
    d = 5
    x_grid = np.linspace(-1, 1, 1000)
    X_test = np.hstack(
        [x_grid.reshape(-1, 1),
         np.random.normal(size=(1000, d - 1))])
    coverage = []
    exp_dict = {'point': [], 'low': [], 'up': []}
    for it in range(100):
        print(it)
        X = np.random.normal(0, 1, size=(n, d))
        y = X[:, 0] + np.random.normal(size=(n, ))
        est = RegressionForest(n_estimators=1000, verbose=1)
        est.fit(X, y)
        point = est.predict(X_test)
        low, up = est.predict_interval(X_test, alpha=0.05)
        coverage.append((low <= x_grid) & (x_grid <= up))
        exp_dict['point'].append(point)
        exp_dict['low'].append(low)
        exp_dict['up'].append(up)

    if not os.path.exists('figures'):
        os.makedirs('figures')
    if not os.path.exists(os.path.join("figures", 'honestforest')):
        os.makedirs(os.path.join("figures", 'honestforest'))

    plt.figure()
    plt.plot(x_grid, np.mean(coverage, axis=0))
    plt.savefig('figures/honestforest/coverage.png')

    plt.figure()
    plt.plot(x_grid,
             np.sqrt(np.mean((np.array(exp_dict['point']) - x_grid)**2,
                             axis=0)),
             label='RMSE')
    plt.savefig('figures/honestforest/rmse.png')

    plt.figure()
    plt.plot(x_grid,
             np.mean(np.array(exp_dict['up']) - np.array(exp_dict['low']),
                     axis=0),
             label='length')
    plt.savefig('figures/honestforest/length.png')