Пример #1
0
 def __add_native(s, P, Q):
     R = _native.EC_elem(s.ec, 0, 0)
     P = _native.EC_elem(s.ec, tuple(P[0]), tuple(P[1]), tuple(P[2]))
     Q = _native.EC_elem(s.ec, tuple(Q[0]), tuple(Q[1]), tuple(Q[2]))
     s.ec.add(R, P, Q)
     R = FiniteFieldEllipticCurvePoint(s, *R.to_python(), normalize=True)
     return R
Пример #2
0
def SSSA_Attack(F, E, P, Q):
    """
  Solve ECDLP using SSSA(Semaev-Smart-Satoh-Araki) Attack.
  Args:
    F: The Base Field
    E: The Elliptic Curve
    P: A point on E
    Q: A point on E
  Returns:
    Return x where satisfies Q = xP.
  """
    from .EllipticCurve import EllipticCurve
    from ecpy.fields import QQ, Zmod
    from ecpy.utils.util import modinv, is_enable_native, _native
    A = E.a
    # lP, lQ, ... is "lifted" P, Q, ...
    x1, y1 = hensel_lift(E, P)
    x2, y2 = hensel_lift(E, Q)
    lF = Zmod(F.p**2)
    lA = (y2 * y2 - y1 * y1 - (x2 * x2 * x2 - x1 * x1 * x1))
    lA = (lA * modinv(x2 - x1, lF.n)) % lF.n
    lB = (y1 * y1 - x1 * x1 * x1 - A * x1) % lF.n
    if not is_enable_native:
        modulo = F.p**2
        lE = EllipticCurve(lF, lA, lB)
        lP = lE(x1, y1)
        lQ = lE(x2, y2)
        lU = (F.p - 1) * lP
        lV = (F.p - 1) * lQ
        dx1 = ((int(lU.x) - x1) // F.p) % modulo
        dx2 = int(lU.y) - y1
        dy1 = ((int(lV.x) - x2) // F.p) % modulo
        dy2 = int(lV.y) - y2
        m = (dy1 * dx2 * modinv(dx1 * dy2, modulo)) % modulo
        return m % F.p
    else:
        modulo = F.p**2
        base = _native.FF(modulo)
        lE = _native.EC(base, lA, lB)
        lP = _native.EC_elem(lE, x1, y1)
        lQ = _native.EC_elem(lE, x2, y2)
        lU = _native.EC_elem(lE, 0, 1, 0)
        lV = _native.EC_elem(lE, 0, 1, 0)
        lE.mul(lU, lP, F.p - 1)
        lE.mul(lV, lQ, F.p - 1)
        lUx, lUy, lUz = lU.to_python()
        lVx, lVy, lVz = lV.to_python()
        lUx = (lUx * modinv(lUz, modulo)) % modulo
        lUy = (lUy * modinv(lUz, modulo)) % modulo
        lVx = (lVx * modinv(lVz, modulo)) % modulo
        lVy = (lVy * modinv(lVz, modulo)) % modulo
        dx1 = ((lUx - x1) // F.p) % modulo
        dx2 = lUy - y1
        dy1 = ((lVx - x2) // F.p) % modulo
        dy2 = lVy - y2
        m = (dy1 * dx2 * modinv(dx1 * dy2, modulo)) % modulo
        return m % F.p
Пример #3
0
 def _mul_native(s, rhs):
     P = tuple(s)
     R = _native.EC_elem(s.group.ec, 0, 1, 0)
     P = _native.EC_elem(s.group.ec, tuple(P[0]), tuple(P[1]), tuple(P[2]))
     m = rhs
     s.group.ec.mul(R, P, m)
     R = FiniteFieldEllipticCurvePoint(s.group,
                                       *R.to_python(),
                                       normalize=True)
     return R