def __init__(self, complexity=None, nbits=20, sequence_vectorizer_complexity=3, graph_vectorizer_complexity=2, n_neighbors=5, sampling_prob=.5, n_iter=5, min_energy=-5, random_state=1): random.seed(random_state) if complexity is not None: sequence_vectorizer_complexity = complexity graph_vectorizer_complexity = complexity self.sequence_vectorizer = SeqVectorizer(complexity=sequence_vectorizer_complexity, nbits=nbits, normalization=False, inner_normalization=False) self.graph_vectorizer = GraphVectorizer(complexity=graph_vectorizer_complexity, nbits=nbits) self.n_neighbors = n_neighbors self.sampling_prob = sampling_prob self.n_iter = n_iter self.min_energy = min_energy self.nearest_neighbors = NearestNeighbors(n_neighbors=n_neighbors)
def __init__(self, complexity=5, n_clusters=10, min_subarray_size=4, max_subarray_size=10, estimator=SGDClassifier(warm_start=True), class_estimator=SGDClassifier(), clusterer=MiniBatchKMeans(), pos_block_size=300, neg_block_size=300, n_jobs=-1): """Construct.""" self.complexity = complexity self.n_clusters = n_clusters self.min_subarray_size = min_subarray_size self.max_subarray_size = max_subarray_size self.pos_block_size = pos_block_size self.neg_block_size = neg_block_size self.n_jobs = n_jobs self.vectorizer = Vectorizer(complexity=complexity, auto_weights=True, nbits=15) self.estimator = estimator self.class_estimator = class_estimator self.clusterer = clusterer self.clusterer_is_fit = False
def __init__(self, n_differences=1, enhance=True, vectorizer=Vectorizer(complexity=3), n_jobs=-1, random_state=1): """Generate sequences starting from input sequences that are 'better' if enhance is set to True ('worse' otherwise) given the set of sequences used in the fit phase. Parameters ---------- n_differences : int (default 1) Number of characters that differ for the generated sequence from the original input sequence. enhance : bool (default True) If set to True then the score computed by the estimator will be higher for the sequences generated than for the input sequences. If False than the score will be lower. vectorizer : EDeN sequence vectorizer The vectorizer to map sequences to sparse vectors. n_jobs : int (default -1) The number of cores to use in parallel. -1 indicates all available. random_state: int (default 1) The random seed. """ self.random_state = random_state self.n_jobs = n_jobs self.n_differences = n_differences self.enhance = enhance self.vectorizer = vectorizer self.estimator = None
def _order_clusters(self, clusters, complexity=3): sep = ' ' * (complexity * 2) # join all sequences in a cluster with enough space that # kmers dont interfere cluster_seqs = [] for cluster_id in clusters: if len(clusters[cluster_id]) > 0: seqs = [s for h, s in clusters[cluster_id]] seq = sep.join(seqs) cluster_seqs.append(seq) # vectorize the seqs and compute their gram matrix K cluster_vecs = Vectorizer(complexity).transform(cluster_seqs) gram_matrix = metrics.pairwise.pairwise_kernels( cluster_vecs, metric='linear') c = linkage(gram_matrix, method='single') orders = [] for id1, id2 in c[:, 0:2]: if id1 < len(cluster_seqs): orders.append(int(id1)) if id2 < len(cluster_seqs): orders.append(int(id2)) return orders
class Vectorizer(object): def __init__(self, complexity=None, nbits=20, sequence_vectorizer_complexity=3, graph_vectorizer_complexity=2, n_neighbors=5, sampling_prob=.5, n_iter=5, min_energy=-5, random_state=1): random.seed(random_state) if complexity is not None: sequence_vectorizer_complexity = complexity graph_vectorizer_complexity = complexity self.sequence_vectorizer = SeqVectorizer(complexity=sequence_vectorizer_complexity, nbits=nbits, normalization=False, inner_normalization=False) self.graph_vectorizer = GraphVectorizer(complexity=graph_vectorizer_complexity, nbits=nbits) self.n_neighbors = n_neighbors self.sampling_prob = sampling_prob self.n_iter = n_iter self.min_energy = min_energy self.nearest_neighbors = NearestNeighbors(n_neighbors=n_neighbors) def fit(self, seqs): # store seqs self.seqs = list(normalize_seqs(seqs)) data_matrix = self.sequence_vectorizer.transform(self.seqs) # fit nearest_neighbors model self.nearest_neighbors.fit(data_matrix) return self def fit_transform(self, seqs, sampling_prob=None, n_iter=None): seqs, seqs_ = tee(seqs) return self.fit(seqs_).transform(seqs, sampling_prob=sampling_prob, n_iter=n_iter) def transform(self, seqs, sampling_prob=None, n_iter=None): seqs = list(normalize_seqs(seqs)) graphs_ = self.graphs(seqs) data_matrix = self.graph_vectorizer.transform(graphs_) return data_matrix def graphs(self, seqs, sampling_prob=None, n_iter=None): seqs = list(normalize_seqs(seqs)) if n_iter is not None: self.n_iter = n_iter if sampling_prob is not None: self.sampling_prob = sampling_prob for seq, neighs in self._compute_neighbors(seqs): if self.n_iter > 1: header, sequence, struct, energy = self._optimize_struct(seq, neighs) else: header, sequence, struct, energy = self._align_sequence_structure(seq, neighs) graph = self._seq_to_eden(header, sequence, struct, energy) yield graph def _optimize_struct(self, seq, neighs): structs = [] results = [] for i in range(self.n_iter): new_neighs = self._sample_neighbors(neighs) header, sequence, struct, energy = self._align_sequence_structure(seq, new_neighs) results.append((header, sequence, struct, energy)) structs.append(struct) instance_id = self._most_representative(structs) selected = results[instance_id] return selected def _most_representative(self, structs): # compute kernel matrix with sequence_vectorizer data_matrix = self.sequence_vectorizer.transform(structs) kernel_matrix = pairwise_kernels(data_matrix, metric='rbf', gamma=1) # compute instance density as 1 over average pairwise distance density = np.sum(kernel_matrix, 0) / data_matrix.shape[0] # compute list of nearest neighbors max_id = np.argsort(-density)[0] return max_id def _sample_neighbors(self, neighs): out_neighs = [] # insert one element at random out_neighs.append(random.choice(neighs)) # add other elements sampling without replacement for neigh in neighs: if random.random() < self.sampling_prob: out_neighs.append(neigh) return out_neighs def _align_sequence_structure(self, seq, neighs, structure_deletions=False): header = seq[0] if len(neighs) < 1: clean_seq, clean_struct = rnafold.RNAfold_wrapper(seq[1]) energy = 0 logger.debug('Warning: no alignment for: %s' % seq) else: str_out = convert_seq_to_fasta_str(seq) for neigh in neighs: str_out += convert_seq_to_fasta_str(neigh) cmd = 'echo "%s" | muscle -clwstrict -quiet' % (str_out) out = sp.check_output(cmd, shell=True) seed = extract_aligned_seed(header, out) cmd = 'echo "%s" | RNAalifold --noPS 2>/dev/null' % (out) out = sp.check_output(cmd, shell=True) struct, energy = extract_struct_energy(out) if energy > self.min_energy: # use min free energy structure clean_seq, clean_struct = rnafold.RNAfold_wrapper(seq[1]) else: clean_seq, clean_struct = make_seq_struct(seed, struct) if structure_deletions: clean_struct = self._clean_structure(clean_seq, clean_struct) return header, clean_seq, clean_struct, energy def _clean_structure(self, seq, stru): ''' Parameters ---------- seq : basestring rna sequence stru : basestring dotbracket string Returns ------- the structure given may not respect deletions in the sequence. we transform the structure to one that does ''' # find deletions in sequence ids = [] for i, c in enumerate(seq): if c == '-': ids.append(i) # remove brackets that dont have a partner anymore stru = list(stru) pairdict = self._pairs(stru) for i in ids: stru[pairdict[i]] = '.' # delete deletions in structure ids.reverse() for i in ids: del stru[i] stru = ''.join(stru) # removing obvious mistakes stru = stru.replace("(())", "....") stru = stru.replace("(.)", "...") stru = stru.replace("(..)", "....") return stru def _pairs(self, struct): ''' Parameters ---------- struct : basestring Returns ------- dictionary of ids in the struct, that are bond pairs ''' unpaired = [] pairs = {} for i, c in enumerate(struct): if c == '(': unpaired.append(i) if c == ')': partner = unpaired.pop() pairs[i] = partner pairs[partner] = i return pairs def _compute_neighbors(self, seqs): seqs = list(seqs) data_matrix = self.sequence_vectorizer.transform(seqs) # find neighbors distances, neighbors = self.nearest_neighbors.kneighbors(data_matrix) # for each seq for seq, neighs in zip(seqs, neighbors): neighbor_seqs = [self.seqs[neigh] for neigh in neighs] yield seq, neighbor_seqs def _seq_to_eden(self, header, sequence, struct, energy): graph = sequence_dotbracket_to_graph(seq_info=sequence, seq_struct=struct) if graph.number_of_nodes() < 2: graph = seq_to_networkx(header, sequence) graph.graph['id'] = header graph.graph['info'] = 'muscle+RNAalifold energy=%.3f' % (energy) graph.graph['energy'] = energy graph.graph['sequence'] = sequence return graph