def captcha_regonize(im): """ Run captcha regonization. """ cleanup() img = rmnoise(preprocess(im)) edges = find_edges(img) cutcaptcha(img, edges) captcha = matchcapthca() return captcha
from skimage import feature from skimage.morphology import disk from skimage.morphology import erosion, dilation import edge_detection as ed parser = argparse.ArgumentParser( description='Shows additional sampling points for the given picture') parser.add_argument('filename', help='file with image', default='pic1.jpg', nargs='?') args = parser.parse_args() print(args.filename) im = ndi.imread(args.filename) img = rgb2gray(im) img_dark = ed.find_dark_regions(img) img_edges = ed.find_edges(img) img = img_dark + img_edges # display results fig = plt.figure() ax0 = fig.add_subplot(111) ax0.imshow(img, cmap=plt.cm.gray) ax0.axis('off') ax0.set_title('Sobel filter', fontsize=12) plt.tight_layout() plt.show()
import argparse import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage.color import rgb2gray import edge_detection as ed parser = argparse.ArgumentParser(description='Shows edges from the given picture') parser.add_argument('filename', help='file with image', default='pic1.jpg', nargs='?') #parser.add_argument('sigma', help='Sigma value for Canny algorithm', default='4', nargs='?') args = parser.parse_args() im = ndi.imread(args.filename) img = rgb2gray(im) img = ed.find_edges(img) # display results fig = plt.figure() ax0 = fig.add_subplot(111) ax0.imshow(img, cmap=plt.cm.gray) ax0.axis('off') ax0.set_title('Sobel filter', fontsize=12) plt.tight_layout() plt.show()
import argparse import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage.color import rgb2gray import edge_detection as ed parser = argparse.ArgumentParser( description='Shows edges from the given picture') parser.add_argument('filename', help='file with image', default='pic1.jpg', nargs='?') #parser.add_argument('sigma', help='Sigma value for Canny algorithm', default='4', nargs='?') args = parser.parse_args() im = ndi.imread(args.filename) img = rgb2gray(im) img = ed.find_edges(img) # display results fig = plt.figure() ax0 = fig.add_subplot(111) ax0.imshow(img, cmap=plt.cm.gray) ax0.axis('off') ax0.set_title('Sobel filter', fontsize=12) plt.tight_layout() plt.show()
import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage.color import rgb2gray from skimage import feature from skimage.morphology import disk from skimage.morphology import erosion, dilation import edge_detection as ed parser = argparse.ArgumentParser(description='Shows additional sampling points for the given picture') parser.add_argument('filename', help='file with image', default='pic1.jpg', nargs='?') args = parser.parse_args() print(args.filename) im = ndi.imread(args.filename) img = rgb2gray(im) img_dark = ed.find_dark_regions(img) img_edges = ed.find_edges(img) img = img_dark + img_edges # display results fig = plt.figure() ax0 = fig.add_subplot(111) ax0.imshow(img, cmap=plt.cm.gray) ax0.axis('off') ax0.set_title('Sobel filter', fontsize=12) plt.tight_layout() plt.show()