Пример #1
0
    def _test_linear_regression(self, default, dtype):
        def build_toy_dataset(N, w, noise_std=0.1):
            D = len(w)
            x = np.random.randn(N, D)
            y = np.dot(x, w) + np.random.normal(0, noise_std, size=N)
            return x, y

        with self.test_session() as sess:
            N = 40  # number of data points
            D = 10  # number of features

            w_true = np.random.randn(D)
            X_train, y_train = build_toy_dataset(N, w_true)
            X_test, y_test = build_toy_dataset(N, w_true)

            X = tf.placeholder(dtype, [N, D])
            w = Normal(loc=tf.zeros(D, dtype=dtype),
                       scale=tf.ones(D, dtype=dtype))
            b = Normal(loc=tf.zeros(1, dtype=dtype),
                       scale=tf.ones(1, dtype=dtype))
            y = Normal(loc=ed.dot(X, w) + b,
                       scale=0.1 * tf.ones(N, dtype=dtype))

            n_samples = 2000
            if not default:
                qw = Empirical(
                    tf.Variable(tf.zeros([n_samples, D], dtype=dtype)))
                qb = Empirical(
                    tf.Variable(tf.zeros([n_samples, 1], dtype=dtype)))
                inference = ed.SGLD({
                    w: qw,
                    b: qb
                },
                                    data={
                                        X: X_train,
                                        y: y_train
                                    })
            else:
                inference = ed.SGLD([w, b], data={X: X_train, y: y_train})
                qw = inference.latent_vars[w]
                qb = inference.latent_vars[b]
            inference.run(step_size=0.001)

            self.assertAllClose(qw.mean().eval(), w_true, rtol=5e-1, atol=5e-1)
            self.assertAllClose(qb.mean().eval(), [0.0], rtol=5e-1, atol=5e-1)

            old_t, old_n_accept = sess.run([inference.t, inference.n_accept])
            if not default:
                self.assertEqual(old_t, n_samples)
            else:
                self.assertEqual(old_t, 1e4)
            self.assertGreater(old_n_accept, 0.1)
            sess.run(inference.reset)
            new_t, new_n_accept = sess.run([inference.t, inference.n_accept])
            self.assertEqual(new_t, 0)
            self.assertEqual(new_n_accept, 0)
Пример #2
0
    def test_sgld(self):
        with self.test_session():
            N, D, W_1, W_2, W_3, b_1, b_2, X, y, X_train, y_train = self._test(
            )

            T = 1  # number of MCMC samples
            qW_1 = Empirical(params=tf.Variable(tf.random_normal([T, D, 20])))
            qW_2 = Empirical(params=tf.Variable(tf.random_normal([T, 20, 15])))
            qW_3 = Empirical(params=tf.Variable(tf.random_normal([T, 15, 1])))
            qb_1 = Empirical(params=tf.Variable(tf.random_normal([T, 20])))
            qb_2 = Empirical(params=tf.Variable(tf.random_normal([T, 15])))

            inference = ed.SGLD(
                {
                    W_1: qW_1,
                    b_1: qb_1,
                    W_2: qW_2,
                    b_2: qb_2,
                    W_3: qW_3
                },
                data={
                    y: y_train,
                    X: X_train
                })
            inference.run()
Пример #3
0
    def _test_normal_normal(self, default, dtype):
        with self.test_session() as sess:
            x_data = np.array([0.0] * 50, dtype=np.float32)

            mu = Normal(loc=tf.constant(0.0, dtype=dtype),
                        scale=tf.constant(1.0, dtype=dtype))
            x = Normal(loc=mu,
                       scale=tf.constant(1.0, dtype=dtype),
                       sample_shape=50)

            n_samples = 2000
            # analytic solution: N(loc=0.0, scale=\sqrt{1/51}=0.140)
            if not default:
                qmu = Empirical(
                    params=tf.Variable(tf.ones(n_samples, dtype=dtype)))
                inference = ed.SGLD({mu: qmu}, data={x: x_data})
            else:
                inference = ed.SGLD([mu], data={x: x_data})
                qmu = inference.latent_vars[mu]
            inference.run(step_size=0.10)

            self.assertAllClose(qmu.mean().eval(), 0, rtol=1e-1, atol=1e-1)
            self.assertAllClose(qmu.stddev().eval(),
                                np.sqrt(1 / 51),
                                rtol=1e-1,
                                atol=1e-1)

            old_t, old_n_accept = sess.run([inference.t, inference.n_accept])
            if not default:
                self.assertEqual(old_t, n_samples)
            else:
                self.assertEqual(old_t, 1e4)
            self.assertGreater(old_n_accept, 0.1)
            sess.run(inference.reset)
            new_t, new_n_accept = sess.run([inference.t, inference.n_accept])
            self.assertEqual(new_t, 0)
            self.assertEqual(new_n_accept, 0)
Пример #4
0
  def test_normalnormal_run(self):
    with self.test_session() as sess:
      x_data = np.array([0.0] * 50, dtype=np.float32)

      mu = Normal(mu=0.0, sigma=1.0)
      x = Normal(mu=tf.ones(50) * mu, sigma=1.0)

      qmu = Empirical(params=tf.Variable(tf.ones(5000)))

      # analytic solution: N(mu=0.0, sigma=\sqrt{1/51}=0.140)
      inference = ed.SGLD({mu: qmu}, data={x: x_data})
      inference.run(step_size=0.2)

      self.assertAllClose(qmu.mean().eval(), 0, rtol=1e-2, atol=1e-2)
      self.assertAllClose(qmu.std().eval(), np.sqrt(1 / 51),
                          rtol=5e-2, atol=5e-2)
Пример #5
0
def main(_):
    ed.set_seed(42)

    # MODEL
    z = MultivariateNormalTriL(loc=tf.ones(2),
                               scale_tril=tf.cholesky(
                                   tf.constant([[1.0, 0.8], [0.8, 1.0]])))

    # INFERENCE
    qz = Empirical(params=tf.get_variable("qz/params", [2000, 2]))

    inference = ed.SGLD({z: qz})
    inference.run(step_size=5.0)

    # CRITICISM
    sess = ed.get_session()
    mean, stddev = sess.run([qz.mean(), qz.stddev()])
    print("Inferred posterior mean:")
    print(mean)
    print("Inferred posterior stddev:")
    print(stddev)
Пример #6
0
    def test_normalnormal_float64(self):
        with self.test_session() as sess:
            x_data = np.array([0.0] * 50, dtype=np.float64)

            mu = Normal(loc=tf.constant(0.0, dtype=tf.float64),
                        scale=tf.constant(1.0, dtype=tf.float64))
            x = Normal(loc=mu,
                       scale=tf.constant(1.0, dtype=tf.float64),
                       sample_shape=50)

            qmu = Empirical(
                params=tf.Variable(tf.ones(5000, dtype=tf.float64)))

            # analytic solution: N(loc=0.0, scale=\sqrt{1/51}=0.140)
            inference = ed.SGLD({mu: qmu}, data={x: x_data})
            inference.run(step_size=0.10)

            self.assertAllClose(qmu.mean().eval(), 0, rtol=1e-1, atol=1e-1)
            self.assertAllClose(qmu.stddev().eval(),
                                np.sqrt(1 / 51),
                                rtol=1e-1,
                                atol=1e-1)
Пример #7
0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import edward as ed
import tensorflow as tf

from edward.models import Empirical, MultivariateNormalFull

ed.set_seed(42)

# MODEL
z = MultivariateNormalFull(
    mu=tf.ones(2),
    sigma=tf.constant([[1.0, 0.8], [0.8, 1.0]]))

# INFERENCE
qz = Empirical(params=tf.Variable(tf.random_normal([2000, 2])))

inference = ed.SGLD({z: qz})
inference.run(step_size=5.0)

# CRITICISM
sess = ed.get_session()
mean, std = sess.run([qz.mean(), qz.std()])
print("Inferred posterior mean:")
print(mean)
print("Inferred posterior std:")
print(std)
def bayes_mult_cmd(table_file, metadata_file, formula, output_file):

    #metadata = _type_cast_to_float(metadata.copy())
    metadata = pd.read_table(metadata_file, index_col=0)
    G_data = dmatrix(formula, metadata, return_type='dataframe')
    table = load_table(table_file)

    # basic filtering parameters
    soil_filter = lambda val, id_, md: id_ in metadata.index
    read_filter = lambda val, id_, md: np.sum(val) > 10
    #sparse_filter = lambda val, id_, md: np.mean(val > 0) > 0.1
    sample_filter = lambda val, id_, md: np.sum(val) > 1000

    table = table.filter(soil_filter, axis='sample')
    table = table.filter(sample_filter, axis='sample')
    table = table.filter(read_filter, axis='observation')
    #table = table.filter(sparse_filter, axis='observation')
    print(table.shape)
    y_data = pd.DataFrame(np.array(table.matrix_data.todense()).T,
                          index=table.ids(axis='sample'),
                          columns=table.ids(axis='observation'))

    y_data, G_data = y_data.align(G_data, axis=0, join='inner')

    psi = _gram_schmidt_basis(y_data.shape[1])
    G_data = G_data.values
    y_data = y_data.values
    N, D = y_data.shape
    p = G_data.shape[1] # number of covariates
    r = G_data.shape[1] # rank of covariance matrix

    psi = tf.convert_to_tensor(psi, dtype=tf.float32)
    n = tf.convert_to_tensor(y_data.sum(axis=1), dtype=tf.float32)

    # hack to get multinomial working
    def _sample_n(self, n=1, seed=None):
        # define Python function which returns samples as a Numpy array
        def np_sample(p, n):
            return multinomial.rvs(p=p, n=n, random_state=seed).astype(np.float32)

        # wrap python function as tensorflow op
        val = tf.py_func(np_sample, [self.probs, n], [tf.float32])[0]
        # set shape from unknown shape
        batch_event_shape = self.batch_shape.concatenate(self.event_shape)
        shape = tf.concat(
            [tf.expand_dims(n, 0), tf.convert_to_tensor(batch_event_shape)], 0)
        val = tf.reshape(val, shape)
        return val
    Multinomial._sample_n = _sample_n


    # dummy variable for gradient
    G = tf.placeholder(tf.float32, [N, p])

    b = Exponential(rate=1.0)
    B = Normal(loc=tf.zeros([p, D-1]), 
               scale=tf.ones([p, D-1]) )

    # Factorization of covariance matrix
    # http://edwardlib.org/tutorials/klqp
    l = Exponential(rate=1.0)
    L = Normal(loc=tf.zeros([p, D-1]), 
               scale=tf.ones([p, D-1]) )
    z = Normal(loc=tf.zeros([N, p]), 
               scale=tf.ones([N, p]))

    # Cholesky trick to get multivariate normal
    v = tf.matmul(G, B) + tf.matmul(z, L)

    # get clr transformed values
    eta = tf.matmul(v, psi)

    Y = Multinomial(total_count=n, logits=eta)


    T = 100000  # the number of mixin samples from MCMC sampling

    qb = PointMass(params=tf.Variable(tf.random_normal([])))
    qB = PointMass(params=tf.Variable(tf.random_normal([p, D-1])))
    qz = Empirical(params=tf.Variable(tf.random_normal([T, N, p])))
    ql = PointMass(params=tf.Variable(tf.random_normal([])))
    qL = PointMass(params=tf.Variable(tf.random_normal([p, D-1])))

    # Imputation
    inference_z = ed.SGLD(
        {z: qz}, 
        data={G: G_data, Y: y_data, B: qB, L: qL}
    )

    # Maximization
    inference_BL = ed.MAP(
        {B: qB, L: qL, b: qb, l: ql}, 
        data={G: G_data, Y: y_data, z: qz}
    )

    inference_z.initialize(step_size=1e-10)
    inference_BL.initialize(n_iter=1000)


    sess = ed.get_session()
    saver = tf.train.Saver()

    tf.global_variables_initializer().run()
    for i in range(inference_BL.n_iter):
        inference_z.update()  # e-step
        # will need to compute the expectation of z

        info_dict = inference_BL.update() # m-step
        inference_BL.print_progress(info_dict)

    save_path = saver.save(sess, output_file)
    print("Model saved in file: %s" % save_path)
    pickle.dump({'qB': sess.run(qB.mean()),
                 'qL': sess.run(qL.mean()),
                 'qz': sess.run(qz.mean())},
                open(output_file + '.params.pickle', 'wb')
    )
Пример #9
0
    def test_monte_carlo(self):
        tf.InteractiveSession()
        ed.set_seed(42)

        # DATA
        X_train = np.zeros([500, 100])
        y_train = np.zeros(500)

        N = X_train.shape[0]  # data points
        D = X_train.shape[1]  # feature
        T = 1  # number of MCMC samples

        # MODEL
        W_1 = Normal(mu=tf.zeros([D, 20]), sigma=tf.ones([D, 20]) * 100)
        W_2 = Normal(mu=tf.zeros([20, 15]), sigma=tf.ones([20, 15]) * 100)
        W_3 = Normal(mu=tf.zeros([15, 1]), sigma=tf.ones([15, 1]) * 100)
        b_1 = Normal(mu=tf.zeros(20), sigma=tf.ones(20) * 100)
        b_2 = Normal(mu=tf.zeros(15), sigma=tf.ones(15) * 100)

        x_ph = tf.placeholder(tf.float32, [N, D])
        y = Bernoulli(logits=four_layer_nn(x_ph, W_1, W_2, W_3, b_1, b_2))

        # INFERENCE
        qW_1 = Empirical(params=tf.Variable(tf.random_normal([T, D, 20])))
        qW_2 = Empirical(params=tf.Variable(tf.random_normal([T, 20, 15])))
        qW_3 = Empirical(params=tf.Variable(tf.random_normal([T, 15, 1])))
        qb_1 = Empirical(params=tf.Variable(tf.random_normal([T, 20])))
        qb_2 = Empirical(params=tf.Variable(tf.random_normal([T, 15])))

        # note ideally these would be separate test methods; there's an
        # issue with the tensorflow graph when re-running the above
        # unfortunately
        inference = ed.HMC(
            {
                W_1: qW_1,
                b_1: qb_1,
                W_2: qW_2,
                b_2: qb_2,
                W_3: qW_3
            },
            data={
                y: y_train,
                x_ph: X_train
            })
        inference.run()

        inference = ed.SGLD(
            {
                W_1: qW_1,
                b_1: qb_1,
                W_2: qW_2,
                b_2: qb_2,
                W_3: qW_3
            },
            data={
                y: y_train,
                x_ph: X_train
            })
        inference.run()

        inference = ed.MetropolisHastings(
            {
                W_1: qW_1,
                b_1: qb_1,
                W_2: qW_2,
                b_2: qb_2,
                W_3: qW_3
            }, {
                W_1: W_1,
                b_1: b_1,
                W_2: W_2,
                b_2: b_2,
                W_3: W_3
            },
            data={
                y: y_train,
                x_ph: X_train
            })
        inference.run()