Пример #1
0
    def _stop_brainflow(self):
        """This functions kills the brainflow backend and saves the data to a CSV file."""

        # Collect session data and kill session
        data = self.board.get_board_data()  # will clear board buffer
        self.board.stop_stream()
        self.board.release_session()

        # transform data for saving
        data = data.T  # transpose data
        ch_names = BRAINFLOW_CHANNELS[self.device_name]
        num_channels = len(ch_names)
        eeg_data = data[:, 1:num_channels + 1]
        timestamps = data[:, -1]

        # Create a column for the stimuli to append to the EEG data
        stim_array = create_stim_array(timestamps, self.markers)
        timestamps = timestamps[
            ..., None]  # Add an additional dimension so that shapes match
        total_data = np.append(timestamps, eeg_data, 1)
        total_data = np.append(total_data, stim_array,
                               1)  # Append the stim array to data.

        # Subtract five seconds of settling time from beginning
        total_data = total_data[5 * self.sfreq:]
        data_df = pd.DataFrame(total_data,
                               columns=['timestamps'] + ch_names + ['stim'])
        data_df.to_csv(self.save_fn, index=False)
Пример #2
0
    def _stop_brainflow(self):
        """This functions kills the brainflow backend and saves the data to a CSV file."""

        # Collect session data and kill session
        data = self.board.get_board_data()  # will clear board buffer
        self.board.stop_stream()
        self.board.release_session()

        # transform data for saving
        data = data.T  # transpose data

        # get the channel names for EEG data
        if self.brainflow_id == BoardIds.GANGLION_BOARD.value:
            # if a ganglion is used, use recommended default EEG channel names
            ch_names = ['fp1', 'fp2', 'tp7', 'tp8']
        else:
            # otherwise select eeg channel names via brainflow API
            ch_names = BoardShim.get_eeg_names(self.brainflow_id)

        # pull EEG channel data via brainflow API
        eeg_data = data[:, BoardShim.get_eeg_channels(self.brainflow_id)]
        timestamps = data[:, BoardShim.get_timestamp_channel(self.brainflow_id)]

        # Create a column for the stimuli to append to the EEG data
        stim_array = create_stim_array(timestamps, self.markers)
        timestamps = timestamps[..., None]  # Add an additional dimension so that shapes match
        total_data = np.append(timestamps, eeg_data, 1)
        total_data = np.append(total_data, stim_array, 1)  # Append the stim array to data.

        # Subtract five seconds of settling time from beginning
        total_data = total_data[5 * self.sfreq:]
        data_df = pd.DataFrame(total_data, columns=['timestamps'] + ch_names + ['stim'])
        data_df.to_csv(self.save_fn, index=False)
Пример #3
0
    def get_data(self) -> pd.DataFrame:
        from eegnb.devices.utils import create_stim_array

        data = self.board.get_board_data()  # will clear board buffer

        # transform data for saving
        data = data.T  # transpose data
        print(data)

        # get the channel names for EEG data
        if self.brainflow_id == BoardIds.GANGLION_BOARD.value:
            # if a ganglion is used, use recommended default EEG channel names
            ch_names = ["fp1", "fp2", "tp7", "tp8"]
        else:
            # otherwise select eeg channel names via brainflow API
            ch_names = BoardShim.get_eeg_names(self.brainflow_id)

        # pull EEG channel data via brainflow API
        eeg_data = data[:, BoardShim.get_eeg_channels(self.brainflow_id)]
        timestamps = data[:,
                          BoardShim.get_timestamp_channel(self.brainflow_id)]

        # Create a column for the stimuli to append to the EEG data
        stim_array = create_stim_array(timestamps, self.markers)
        timestamps = timestamps[
            ..., None]  # Add an additional dimension so that shapes match
        total_data = np.append(timestamps, eeg_data, 1)
        total_data = np.append(total_data, stim_array,
                               1)  # Append the stim array to data.

        # Subtract five seconds of settling time from beginning
        # total_data = total_data[5 * self.sfreq :]
        df = pd.DataFrame(total_data,
                          columns=["timestamps"] + ch_names + ["stim"])
        return df
Пример #4
0
    def _stop_brainflow(self):
        """This functions kills the brainflow backend and saves the data to a CSV file."""

        # Collect session data and kill session
        data = self.board.get_board_data()  # will clear board buffer
        self.board.stop_stream()
        self.board.release_session()

        # Extract relevant metadata from board
        ch_names, eeg_data, timestamps = self._brainflow_extract(data)

        # Create a column for the stimuli to append to the EEG data
        stim_array = create_stim_array(timestamps, self.markers)
        timestamps = timestamps[..., None]

        # Add an additional dimension so that shapes match
        total_data = np.append(timestamps, eeg_data, 1)

        # Append the stim array to data.
        total_data = np.append(total_data, stim_array, 1)

        # Subtract five seconds of settling time from beginning
        total_data = total_data[5 * self.sfreq:]
        data_df = pd.DataFrame(total_data,
                               columns=["timestamps"] + ch_names + ["stim"])
        data_df.to_csv(self.save_fn, index=False)