Пример #1
0
 def __init__(self, *args, **kwargs):
     super().__init__(*args, **kwargs)
     config = omegaconf.OmegaConf.merge(
         effdet.get_efficientdet_config(model_name=MODEL_NAME),
         omegaconf.OmegaConf.create({
             "min_level":
             MIN_LEVEL,
             "max_level":
             MAX_LEVEL,
             "num_levels":
             NUM_LEVELS,
             "max_detection_points":
             MAX_DETECTION_POINTS,
         }),
     )
     self.model = effdet.create_model_from_config(
         config=config,
         num_classes=NUM_CLASSES,
         bench_task="",
         pretrained=False,
         pretrained_backbone=False,
         image_size=(INPUT_HEIGHT, INPUT_WIDTH),
         max_det_per_image=MAX_DET_PER_IMAGE,
     )
     self.config = {
         "anchors": effdet.anchors.Anchors.from_config(self.model.config)
     }
     self.resize = torchvision.transforms.Resize(size=(INPUT_HEIGHT,
                                                       INPUT_WIDTH))
Пример #2
0
 def __init__(
     self,
     annotation_config=mds.COCOAnnotationConfiguration90,
     model_name: str = "tf_efficientdet_d0",
     pretrained_backbone: bool = True,
     pretrained_top: bool = False,
     device="cpu",
     resize_method: detector.ResizeMethod = "fit",
     **kwargs,
 ):
     super().__init__(device=device, resize_method=resize_method)
     config = effdet.get_efficientdet_config(model_name=model_name)
     if kwargs:
         config = omegaconf.OmegaConf.merge(  # type: ignore
             config,
             omegaconf.OmegaConf.create(kwargs),
         )
     self.annotation_config = annotation_config
     self.model = effdet.create_model_from_config(
         config=config,
         num_classes=len(annotation_config),
         bench_task="",
         pretrained=pretrained_top,
         pretrained_backbone=pretrained_backbone,
     ).to(self.device)
     self.model_name = model_name
     self.set_input_shape(width=config.image_size[1],
                          height=config.image_size[0])
def get_effdet_model(cfg, pretrained=True, task='train'):
    base_config = get_efficientdet_config(cfg.train.backbone_det)
    base_config.image_size = (cfg.data.img_size, cfg.data.img_size)
    model = create_model_from_config(base_config,
                                     bench_task=task,
                                     bench_labeler=True,
                                     num_classes=cfg.data.num_classes,
                                     pretrained=pretrained)

    return model
Пример #4
0
def model(
    backbone: EfficientDetBackboneConfig,
    num_classes: int,
    img_size: int,
    **kwargs,
) -> nn.Module:
    """Creates the efficientdet model specified by `model_name`.

    The model implementation is by Ross Wightman, original repo
    [here](https://github.com/rwightman/efficientdet-pytorch).

    # Arguments
        backbone: Specifies the backbone to use create the model. For pretrained models, check
            [this](https://github.com/rwightman/efficientdet-pytorch#models) table.
        num_classes: Number of classes of your dataset (including background).
        img_size: Image size that will be fed to the model. Must be squared and
            divisible by 128.

    # Returns
        A PyTorch model.
    """
    model_name = backbone.model_name
    config = get_efficientdet_config(model_name=model_name)
    config.image_size = (img_size,
                         img_size) if isinstance(img_size, int) else img_size

    model_bench = create_model_from_config(
        config,
        bench_task="train",
        bench_labeler=True,
        num_classes=num_classes - 1,
        pretrained=backbone.pretrained,
        **kwargs,
    )

    # TODO: Break down param groups for backbone
    def param_groups_fn(model: nn.Module) -> List[List[nn.Parameter]]:
        unwrapped = unwrap_bench(model)

        layers = [
            unwrapped.backbone,
            unwrapped.fpn,
            nn.Sequential(unwrapped.class_net, unwrapped.box_net),
        ]
        param_groups = [list(layer.parameters()) for layer in layers]
        check_all_model_params_in_groups2(model, param_groups)

        return param_groups

    model_bench.param_groups = MethodType(param_groups_fn, model_bench)

    return model_bench
    def get_model(
        self,
        model_name="tf_efficientdet_d0",
        impactonly=False,
        seqmode=False,
        fullsizeimage=False,
        anchor_scale=4,
    ):
        model_name = model_name
        config = get_efficientdet_config(model_name)

        if fullsizeimage:
            # (H, W) size % 128 = 0 on each dim
            config.image_size = (640, 1280)
            # config.image_size = (1280, 1280)
        else:
            config.image_size = (512, 512)

        config.anchor_scale = anchor_scale
        # config.norm_kwargs = dict(eps=0.001, momentum=0.01)

        if impactonly:
            num_classes = 1
        else:
            num_classes = 2

        model = create_model_from_config(
            config=config,
            bench_task="train",
            num_classes=num_classes,
            pretrained=True,
            checkpoint_path="",
            checkpoint_ema=False,
            bench_labeler=True,
        )

        if seqmode == True:
            model.model.backbone.conv_stem = timm.models.layers.Conv2dSame(
                9, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)

        return model