Пример #1
0
def build_model_base(images, model_name, training, override_params=None):
  """Create a base feature network and return the features before pooling.

  Args:
    images: input images tensor.
    model_name: string, the predefined model name.
    training: boolean, whether the model is constructed for training.
    override_params: A dictionary of params for overriding. Fields must exist in
      efficientnet_model.GlobalParams.

  Returns:
    features: base features before pooling.
    endpoints: the endpoints for each layer.

  Raises:
    When model_name specified an undefined model, raises NotImplementedError.
    When override_params has invalid fields, raises ValueError.
  """
  assert isinstance(images, tf.Tensor)
  # For backward compatibility.
  if override_params and override_params.get('drop_connect_rate', None):
    override_params['survival_prob'] = 1 - override_params['drop_connect_rate']

  blocks_args, global_params = get_model_params(model_name, override_params)

  model = efficientnet_model.Model(blocks_args, global_params, model_name)
  outputs = model(images, training=training, features_only=True)
  return outputs[0], outputs[1:]
Пример #2
0
 def test_bottleneck_block_with_superpixel_layer(self):
     """Test for creating a model with fused bottleneck block arguments."""
     images = tf.zeros((10, 128, 128, 3), dtype=tf.float32)
     global_params = efficientnet_model.GlobalParams(
         1.0,
         1.0,
         0,
         'channels_last',
         num_classes=10,
         batch_norm=utils.TpuBatchNormalization)
     blocks_args = [
         efficientnet_model.BlockArgs(kernel_size=3,
                                      num_repeat=3,
                                      input_filters=3,
                                      output_filters=6,
                                      expand_ratio=6,
                                      id_skip=True,
                                      strides=[2, 2],
                                      conv_type=0,
                                      fused_conv=0,
                                      super_pixel=1)
     ]
     model = efficientnet_model.Model(blocks_args, global_params)
     outputs = model(images, training=True)
     self.assertEqual((10, 10), outputs[0].shape)
Пример #3
0
 def test_reduction_endpoint_with_single_block_without_sp(self):
     """Test reduction point with single block/layer."""
     images = tf.zeros((10, 128, 128, 3), dtype=tf.float32)
     global_params = efficientnet_model.GlobalParams(
         1.0,
         1.0,
         0,
         'channels_last',
         num_classes=10,
         batch_norm=utils.TpuBatchNormalization)
     blocks_args = [
         efficientnet_model.BlockArgs(kernel_size=3,
                                      num_repeat=1,
                                      input_filters=3,
                                      output_filters=6,
                                      expand_ratio=6,
                                      id_skip=False,
                                      strides=[2, 2],
                                      se_ratio=0.8,
                                      conv_type=0,
                                      fused_conv=0,
                                      super_pixel=0)
     ]
     model = efficientnet_model.Model(blocks_args, global_params)
     _ = model(images, training=True)
     self.assertIn('reduction_1', model.endpoints)
     # single block should have one and only one reduction endpoint
     self.assertNotIn('reduction_2', model.endpoints)
Пример #4
0
 def test_variables(self):
     """Test for variables in blocks to be included in `model.variables`."""
     images = tf.zeros((10, 128, 128, 3), dtype=tf.float32)
     global_params = efficientnet_model.GlobalParams(
         1.0,
         1.0,
         0,
         'channels_last',
         num_classes=10,
         batch_norm=utils.TpuBatchNormalization)
     blocks_args = [
         efficientnet_model.BlockArgs(kernel_size=3,
                                      num_repeat=3,
                                      input_filters=3,
                                      output_filters=6,
                                      expand_ratio=6,
                                      id_skip=False,
                                      strides=[2, 2],
                                      se_ratio=0.8,
                                      conv_type=0,
                                      fused_conv=0,
                                      super_pixel=0)
     ]
     model = efficientnet_model.Model(blocks_args, global_params)
     _ = model(images, training=True)
     var_names = {var.name for var in model.variables}
     self.assertIn('model/blocks_0/conv2d/kernel:0', var_names)
Пример #5
0
def get_model(model_name, override_params=None, model_dir=None):
    """A helper function to create and return model.

  Args:
    model_name: string, the predefined model name.
    override_params: A dictionary of params for overriding. Fields must exist in
      efficientnet_model.GlobalParams.
    model_dir: string, optional model dir for saving configs.

  Returns:
    created model

  Raises:
    When model_name specified an undefined model, raises NotImplementedError.
    When override_params has invalid fields, raises ValueError.
  """

    # For backward compatibility.
    if override_params and override_params.get('drop_connect_rate', None):
        override_params[
            'survival_prob'] = 1 - override_params['drop_connect_rate']

    if not override_params:
        override_params = {}

    if model_name.startswith('efficientnet-lite'):
        builder = efficientnet_lite_builder
    elif model_name.startswith('efficientnet-'):
        builder = efficientnet_builder
    else:
        raise ValueError('Unknown model name {}'.format(model_name))

    blocks_args, global_params = builder.get_model_params(
        model_name, override_params)

    if model_dir:
        param_file = os.path.join(model_dir, 'model_params.txt')
        if not tf.io.gfile.exists(param_file):
            if not tf.io.gfile.exists(model_dir):
                tf.io.gfile.mkdir(model_dir)
            with tf.io.gfile.GFile(param_file, 'w') as f:
                logging.info('writing to %s', param_file)
                f.write('model_name= %s\n\n' % model_name)
                f.write('global_params= %s\n\n' % str(global_params))
                f.write('blocks_args= %s\n\n' % str(blocks_args))

    return efficientnet_model.Model(blocks_args, global_params, model_name)
Пример #6
0
def build_model(images,
                model_name,
                training,
                override_params=None,
                model_dir=None,
                fine_tuning=False,
                features_only=False,
                pooled_features_only=False):
  """A helper function to create a model and return predicted logits.

  Args:
    images: input images tensor.
    model_name: string, the predefined model name.
    training: boolean, whether the model is constructed for training.
    override_params: A dictionary of params for overriding. Fields must exist in
      efficientnet_model.GlobalParams.
    model_dir: string, optional model dir for saving configs.
    fine_tuning: boolean, whether the model is used for finetuning.
    features_only: build the base feature network only (excluding final
      1x1 conv layer, global pooling, dropout and fc head).
    pooled_features_only: build the base network for features extraction (after
      1x1 conv layer and global pooling, but before dropout and fc head).

  Returns:
    logits: the logits tensor of classes.
    endpoints: the endpoints for each layer.

  Raises:
    When model_name specified an undefined model, raises NotImplementedError.
    When override_params has invalid fields, raises ValueError.
  """
  assert isinstance(images, tf.Tensor)
  assert not (features_only and pooled_features_only)

  # For backward compatibility.
  if override_params and override_params.get('drop_connect_rate', None):
    override_params['survival_prob'] = 1 - override_params['drop_connect_rate']

  if not training or fine_tuning:
    if not override_params:
      override_params = {}
    override_params['batch_norm'] = utils.BatchNormalization
    if fine_tuning:
      override_params['relu_fn'] = functools.partial(swish, use_native=False)
  blocks_args, global_params = get_model_params(model_name, override_params)

  if model_dir:
    param_file = os.path.join(model_dir, 'model_params.txt')
    if not tf.io.gfile.exists(param_file):
      if not tf.io.gfile.exists(model_dir):
        tf.io.gfile.makedirs(model_dir)
      with tf.io.gfile.GFile(param_file, 'w') as f:
        logging.info('writing to %s', param_file)
        f.write('model_name= %s\n\n' % model_name)
        f.write('global_params= %s\n\n' % str(global_params))
        f.write('blocks_args= %s\n\n' % str(blocks_args))

  model = efficientnet_model.Model(blocks_args, global_params, model_name)
  outputs = model(
      images,
      training=training,
      features_only=features_only,
      pooled_features_only=pooled_features_only)
  features, endpoints = outputs[0], outputs[1:]
  if features_only:
    features = tf.identity(features, 'features')
  elif pooled_features_only:
    features = tf.identity(features, 'pooled_features')
  else:
    features = tf.identity(features, 'logits')
  return features, endpoints