Пример #1
0
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        self.nfeat_factor = kwargs.get("nfeat_factor")
        self.cfiltsz = kwargs.get("cfiltsz", kwargs.get("filtsz", [3]))
        self.max_feat = kwargs.get("max_feat", 30)
        self.gating = kwargs.get("gating", "skip")
        self.num_gates = kwargs.get("num_gates", 1)
        self.activation = kwargs.get("activation", "tanh")
        self.wsz = kwargs.get("wsz", 30)
        self.projsz = kwargs.get("projsz", 0)
        self.pdrop = kwargs.get("pdrop", 0.5)
        self.filtsz, self.nfeats = calc_nfeats(self.cfiltsz, self.nfeat_factor,
                                               self.max_feat, self.wsz)
        self.conv_outsz = int(np.sum(self.nfeats))
        self.outsz = self.conv_outsz
        if self.projsz > 0:
            self.outsz = self.projsz
        self.proj = pytorch_linear(self.conv_outsz, self.outsz)

        self.embeddings = LookupTableEmbeddings(**kwargs)
        self.char_comp = WithDropout(
            ParallelConv(self.embeddings.output_dim, self.nfeats, self.filtsz,
                         self.activation), self.pdrop)

        GatingConnection = SkipConnection if self.gating == "skip" else Highway
        self.gating_seq = nn.Sequential(
            OrderedDict([("gate-{}".format(i),
                          GatingConnection(self.char_comp.output_dim))
                         for i in range(self.num_gates)]))
Пример #2
0
    def __init__(self, trainable=True, name=None, dtype=tf.float32, **kwargs):
        trainable = kwargs.get("finetune", trainable)
        super().__init__(trainable=trainable, name=name, dtype=dtype)
        self._name = name
        self.scope = kwargs.get("scope", "CharConv")
        self.finetune = kwargs.get("finetune", trainable)
        self.nfeat_factor = kwargs.get("nfeat_factor", None)
        self.cfiltsz = kwargs.get("cfiltsz", kwargs.get("filtsz", [3]))
        self.max_feat = kwargs.get("max_feat", 30)
        self.gating = kwargs.get("gating", "skip")
        self.num_gates = kwargs.get("num_gates", 1)
        self.activation = kwargs.get("activation", "tanh")
        self.wsz = kwargs.get("wsz", 30)
        self.projsz = kwargs.get("projsz")
        self.x = None
        # These are the actual final filter sizes and num features
        self.filtsz, self.nfeats = calc_nfeats(self.cfiltsz, self.nfeat_factor,
                                               self.max_feat, self.wsz)
        self.conv_outsz = np.sum(self.nfeats)
        self.outsz = self.conv_outsz
        if self.projsz is not None:
            self.outsz = self.projsz
            self.proj = tf.keras.layers.Dense(
                self.outsz, bias_initializer=tf.constant_initializer(0.0))

        self.embed = LookupTableEmbeddings(name=f"{self.name}/CharLUT",
                                           finetune=self.finetune,
                                           **kwargs)
Пример #3
0
    def __init__(self, trainable=True, name=None, dtype=tf.float32, **kwargs):
        trainable = kwargs.get("finetune", trainable)
        super().__init__(trainable=trainable, name=name, dtype=dtype, **kwargs)
        self.cpu_placement = bool(kwargs.get('cpu_placement', False))
        self.scope = kwargs.get("scope", "CharConv")
        self.finetune = kwargs.get("finetune", trainable)
        self.nfeat_factor = kwargs.get("nfeat_factor", None)
        self.cfiltsz = kwargs.get("cfiltsz", kwargs.get("filtsz", [3]))
        self.max_feat = kwargs.get("max_feat", 30)
        gating = kwargs.get("gating", "skip")
        num_gates = kwargs.get("num_gates", 1)
        activation = kwargs.get("activation", "tanh")
        self.wsz = kwargs.get("wsz", 30)
        self.projsz = kwargs.get("projsz")
        self.x = None
        # These are the actual final filter sizes and num features
        filtsz, nfeats = calc_nfeats(self.cfiltsz, self.nfeat_factor, self.max_feat, self.wsz)

        self.embed = LookupTableEmbeddings(name=f"{self.name}/CharLUT", finetune=self.finetune, **kwargs)
        dsz = self.embed.output_dim
        self.parallel_conv = ParallelConv(dsz, nfeats, filtsz, activation)
        self.gating_fns = tf.keras.Sequential()
        for _ in range(num_gates):
            if gating == 'skip':
                self.gating_fns.add(SkipConnection(self.parallel_conv.output_dim, activation))
            else:
                self.gating_fns.add(Highway(self.parallel_conv.output_dim))

        self.outsz = self.parallel_conv.output_dim
        if self.projsz is not None:
            self.outsz = self.projsz
            self.proj = tf.keras.layers.Dense(self.outsz, bias_initializer=tf.constant_initializer(0.0))
Пример #4
0
def test_feat_factor_capped():
    gold_filtsz = [1, 2, 3, 4, 5]
    feat_factor = 10
    gold_nfeats = [10, 20, 30, 30, 30]
    filtsz, nfeats = calc_nfeats(gold_filtsz, feat_factor, 30)
    assert filtsz == gold_filtsz
    assert nfeats == gold_nfeats
Пример #5
0
def test_feat_factor_manual():
    gold_filtsz = [1, 2, 3, 4, 5]
    feat_factor = 10
    gold_nfeats = [10, 20, 30, 40, 50]
    filtsz, nfeats = calc_nfeats(gold_filtsz, feat_factor, float("Infinity"))
    assert filtsz == gold_filtsz
    assert nfeats == gold_nfeats
Пример #6
0
def test_feat_factor():
    gold_filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))]
    feat_factor = random.randint(10, 25)
    max_feat = random.randint(30, 40)
    gold_nfeats = np.minimum(np.array(gold_filtsz) * feat_factor, max_feat)
    filtsz, nfeats = calc_nfeats(gold_filtsz, feat_factor, max_feat)
    np.testing.assert_equal(filtsz, gold_filtsz)
    np.testing.assert_equal(nfeats, gold_nfeats)
Пример #7
0
def test_extract_tuple():
    filt_feat = [(random.randint(1, 10), random.randint(10, 20))
                 for _ in range(random.randint(2, 6))]
    gold_filtsz = tuple(filter_and_size[0] for filter_and_size in filt_feat)
    gold_nfeats = tuple(filter_and_size[1] for filter_and_size in filt_feat)
    filtsz, nfeats = calc_nfeats(filt_feat)
    assert filtsz == gold_filtsz
    assert nfeats == gold_nfeats
Пример #8
0
def test_feat_factor_max_none():
    filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))]
    feat_factor = 10
    with pytest.raises(AssertionError):
        calc_nfeats(filtsz, nfeat_factor=feat_factor, max_feat=None)
Пример #9
0
def test_use_nfeats():
    filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))]
    input_nfeat = random.randint(1, 100)
    gold_nfeats = [input_nfeat] * len(filtsz)
    _, nfeat = calc_nfeats(filtsz, None, None, nfeats=input_nfeat)
    assert nfeat == gold_nfeats
Пример #10
0
def test_use_nfeats_list():
    filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))]
    nfeats = [random.randint(1, 10) for _ in range(len(filtsz))]
    with pytest.raises(AssertionError):
        _, nfeat = calc_nfeats(filtsz, None, None, nfeats=nfeats)
Пример #11
0
def test_use_nfeats_none():
    filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))]
    with pytest.raises(AssertionError):
        calc_nfeats(filtsz)
Пример #12
0
def test_use_nfeats_filtsz_unchanged():
    gold_filtsz = [random.randint(1, 10) for _ in range(random.randint(2, 6))]
    nfeat = random.randint(1, 100)
    filtsz, _ = calc_nfeats(gold_filtsz, None, None, nfeats=nfeat)
    assert filtsz == gold_filtsz