Пример #1
0
    def test_eia_release_analysis(self):

        eikonkey = os.environ['EIKON_KEY']
        ek.set_app_key(eikonkey)

        d = stocks.eia_release_analysis()
        self.assertTrue(isinstance(d, pd.DataFrame))
Пример #2
0
    def __init__(self,
                 eikon_app_key,
                 data,
                 outputdir,
                 iscontinue=False,
                 pathtodone=None):
        """

        data :: [Str]        List with company rics
        outputdir :: Str Path to outputdirname
        iscontinue :: Bool    If true, won't get
                                        headlines for dates which already exist
        pathtodone :: Str Path to textfile with done rics

        dateto: :: Str  | datetime      Ending date, if Str form YYYY-MM-DD
        datefrom :: Str | datetime        Starting date, if Str form YYYY-MM-DD
        """
        ek.set_app_key(eikon_app_key)
        print('Eikon connected')
        eventlet.monkey_patch()
        self.ordered = ['A', 'O', 'B', 'K', 'PK']  #exchange types
        self.rics = data
        self.outputdir = outputdir
        self.iscontinue = iscontinue
        os.makedirs(self.outputdir, exist_ok=True)
        self.done = pathtodone
        if self.done is not None:
            #READ ALL COMPS ALREADY DONE
            with open(self.done, 'r') as f:
                done_rics = set(f.read().strip().split('\n'))
            self.rics -= done_rics

        print('Updating %d companies' % len(self.rics))
Пример #3
0
 def rtConn():
     try:
         TR_ID = '70650e2c881040408f6f95dea2bf3fa13e9f66fe'
         ek.set_app_key(TR_ID)
     except ek.eikonError.EikonError as e:
         print(e)
     return None
Пример #4
0
def reuters_eikon_data_scraper(instruments: list, fields: list, properties:dict, api_key:str):
    df, err = None, None
    ek.set_app_key(api_key)
    try:
        df, err = ek.get_data(instruments, fields, properties, field_name=True, raw_output=False)
        if err is not None:
            err = {'error_type': 'REUTERS', 'error_message': str(err), 'req_instruments': instruments, 'req_fields': fields, 'req_properties': properties}
        else:
            df.columns = [i.replace('.', '_') for i in df.columns.tolist()]
    except Exception as error:
        err = {'error_type': 'PyREUTERS', 'error_message': str(error).replace('\n', ';').encode(), 'req_instruments': instruments, 'req_fields': fields, 'req_properties':properties}
    finally:
        return df, err
Пример #5
0
def retrieve_monthly_assets_total_returns(date_from, date_to, assets_ric_list):
    if date_from >= date_to:
        raise Exception("Dates are wrong")
    if len(assets_ric_list) == 0:
        raise Exception("At least one RIC needed in the RICs list")

    ek.set_app_key("94baceedc0c24ae8961456ae2b67bc72532e997f")
    start_date = date_from
    end_date = date_to
    timeline = []

    next_from_date = start_date.replace(day=1)
    next_to_date = (start_date + rd.relativedelta(months=1)) + rd.relativedelta(days=-1)
    next_time_slot = (next_from_date, next_to_date)
    while next_time_slot[1] < end_date:
        timeline.append(next_time_slot)
        next_from_date = timeline[-1][1] + rd.relativedelta(days=1)
        next_to_date = (next_from_date + rd.relativedelta(months=1)) + rd.relativedelta(days=-1)
        next_time_slot = (next_from_date, next_to_date)

    total_return_percentage_all = {}
    for target_asset in assets_ric_list:
        total_return_percentage_all[target_asset] = {}
        total_return_percentage_all[target_asset]["timeline"] = []

    for timeslot in timeline:
        start_time = time.time()
        i = timeline.index(timeslot)
        tl = len(timeline)
        f = dt.datetime.strftime(timeslot[0], "%Y-%m-%d")
        t = dt.datetime.strftime(timeslot[1], "%Y-%m-%d")
        o = ek.get_data(assets_ric_list, ['TR.TotalReturn'], {'SDate': f, 'EDate': t})
        o_assets_list = o[0]["Instrument"].to_list()
        for target_asset in assets_ric_list:
            index_of_target_asset = o_assets_list.index(target_asset)
            try:
                to_store = ((f, t), float(o[0]["Total Return"][index_of_target_asset]) / 100)
            except ValueError:
                to_store = ((f, t), np.nan)
            total_return_percentage_all[target_asset]["timeline"].append(to_store)
        end_time = time.time()
        msg = "Loading from Eikon ({:d} of {:d}, {:.2f}%) (remaining time: {:.2f} seconds)"
        print(msg.format(i, tl, 100 * i / tl, (end_time - start_time)*(tl-i)))

    return total_return_percentage_all
Пример #6
0
def init( app ):

    cfg = json.load(
        fp = open( os.path.join( os.getenv( 'FLASKEIKON' ), 'resource', 'config' ) )
    )
    eikon.set_app_key( cfg[ 'appid' ] )

    handler = TimedRotatingFileHandler(
        filename = cfg[ 'log' ], when = 'MIDNIGHT', encoding = 'utf-8'
    )
    handler.setFormatter( logging.Formatter(
        '[%(processName)s[%(process)d]|%(threadName)s[%(thread)d]|%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s > %(message)s'
    ) )
    app.logger.addHandler( handler )
    app.logger.setLevel( logging.DEBUG )

    app.config[ 'IP' ] = cfg[ 'ip' ]
    app.config[ 'PORT' ] = cfg[ 'port' ]

    from app.api import api as api_blueprint
    app.register_blueprint( blueprint = api_blueprint, url_prefix = '/api/' )
Пример #7
0
def makeResponse(req):
    if req.get("result").get("action") != "fetchNews":
        return {}
    result = req.get("result")
    parameters = result.get("parameters")
    ticker = parameters.get("ticker")
    if ticker is None:
        return None
    tr.set_app_key('229dfa317f614c3c9cdfa2908c1ff66af4fdf1c6')
    r = tr.get_news_headlines('ticker',
                              date_from='2020-03-09',
                              date_to='2020-03-10',
                              count=5)
    r.head()
    news = r("text")
    print(news)

    result = "The news on" + ticker + "are" + news
    return {
        "text": result,
    }
Пример #8
0
Файл: data.py Проект: biowpn/OPQ
def update_daily_data(stocks):
    '''
    Update the daily data for the stocks specified.
    '''

    s = sched.scheduler(time.time, time.sleep)
    ek.set_app_key('66063f6d35e4453ebba0696f40307bc61e7172f2')

    config = util.import_config()
    stock_data_folder = config['STOCK_DATA_FOLDER']

    # Get the current moment date in US
    end_date = util.get_us_time()

    for stock_code in stocks:
        fname = os.path.join(stock_data_folder, stock_code + '.csv')
        if os.path.isfile(fname):
            stock_df = pd.read_csv(fname)
            start_date = max(stock_df["Date"])
        else:
            stock_df = pd.DataFrame()
            start_date = end_date
        try:
            new_df = ek.get_timeseries(stock_code,
                                       start_date=start_date,
                                       end_date=end_date).reset_index()
            new_df["Date"] = new_df["Date"][0:10]
            stock_df = stock_df.append(new_df)
            stock_df = stock_df.reindex(columns=[
                "Date", "HIGH", "CLOSE", "LOW", "OPEN", "COUNT", "VOLUME"
            ])
            stock_df.drop_duplicates(["Date"], inplace=True)
            stock_df.to_csv(fname, index=False)
            #time.sleep(5.0 - ((time.time() - start_time) % 5.0))
            print("Successfully updated daily date for", stock_code)
        except Exception as e:
            print("Error in acquiring ", stock_code, ":")
            print(str(e))
Пример #9
0
def thomson_timeseries(
    tickers,
    fields,
    corax,
    start_date=datetime.today().strftime("%Y%m%d"),
    end_date=datetime.today().strftime("%Y%m%d"),
):
    """ 톰슨 로이터 시계열 데이터 소싱 """
    ek.set_app_key("9c4370471d3c41ea9a2a8911d842812e941e06df")

    try:
        data = ek.get_timeseries(
            tickers,
            fields=fields,
            start_date=start_date,
            end_date=end_date,
            interval="daily",
            corax=corax,
        )
        print(data)
    except:
        raise ValueError("thomson data sourcing ERROR")
    return data
Пример #10
0
def main():
    # Excel
    sheet = xw.Book.caller().sheets[0]
    rng = sheet['A2'].expand()

    pid_file = Path(__file__).resolve().parent / "pid"
    if pid_file.exists():
        # Stop streaming
        with open(pid_file, 'r') as f:
            pid = f.read()
        try:
            os.kill(int(pid), signal.SIGTERM)
            pid_file.unlink()
        except ProcessLookupError as e:
            os.remove(pid_file)
        finally:
            rng[1:, 1:].clear_contents()
            rng[0, 0].offset(row_offset=-1, column_offset=1).clear_contents()
    else:  # Start streaming
        with open(pid_file, 'w') as f:
            f.write(str(os.getpid()))

        # Connect to Refinitiv Workspace
        conf = ConfigParser()
        conf.read(os.path.join(os.path.dirname(__file__), '..', 'eikon.conf'))
        ek.set_app_key(conf['eikon']['APP_KEY'])

        instruments, fields = rng[1:, 0].value, rng[0, 1:].value
        streaming_prices = ek.StreamingPrices(instruments=instruments,
                                              fields=fields)
        streaming_prices.open()

        while True:
            rng[1, 1].value = streaming_prices.get_snapshot().to_numpy()[:, 1:]
            rng[0, 0].offset(row_offset=-1,
                             column_offset=1).value = dt.datetime.now()
Пример #11
0
    def thomson_sourcing(self):

        ek.set_app_key("9c4370471d3c41ea9a2a8911d842812e941e06df")
        tr_fields = [
            "TR.CLOSEPRICE",
            "TR.OPENPRICE(Adjusted=1)",
            "TR.CLOSEPRICE(Adjusted=1)",
            "TR.HIGHPRICE(Adjusted=1)",
            "TR.LOWPRICE(Adjusted=1)",
            "TR.IssueMarketCap",
        ]

        sec = 4
        interval = int(np.floor(len(self.tsTickers) / sec))

        tot_data = pd.DataFrame()
        for i in range(0, len(self.tsTickers), interval):

            tsData = self.thomson(
                self.tsTickers[i : i + interval], tr_fields
            )  # , parameters={'SDate':self.start, 'EDate':self.end})
            tot_data = pd.concat([tot_data, tsData], axis=0)
            time.sleep(3)

        tot_data.columns = [
            "Instrument",
            "종가",
            "수정시가",
            "수정주가",
            "수정고가",
            "수정저가",
            "시가총액",
            "date",
        ]
        tot_data.to_csv("{}/thomson.csv".format(self.today), encoding="cp949")
        self.organize_data("thomson", tot_data)
Пример #12
0
import eikon as ek
import xlwings as xw

# Please read your Eikon APP_KEY from a config file or environment variable
ek.set_app_key('YOUR_APP_KEY')


def main():
    # These parameters could also come from a config sheet in the template
    instrument = '.DJI'
    start_date = '2020-01-01'
    end_date = '2020-01-31'

    # Eikon queries
    df = ek.get_timeseries(instrument,
                           fields='*',
                           start_date=start_date,
                           end_date=end_date)

    summary, err = ek.get_data(instrument,
                               ['TR.IndexName', 'TR.IndexCalculationCurrency'])

    # Populate the Excel template with the data
    wb = xw.Book.caller()
    wb.sheets[0][
        'A4'].value = f"{summary.loc[0, 'Index Name']} ({summary.loc[0, 'Calculation Currency']})"
    wb.sheets[0]['A6'].value = df


if __name__ == '__main__':
    xw.Book('sample2.xlsx').set_mock_caller()
Пример #13
0
import numpy
import pandas
import eikon
eikon.set_app_key('638fa3bbb90349d5a97dc60c1c0cc4b0b5646846')
eikon.get_news_headlines('R:LHAG.DE', date_from='2018-01-01T00:00:00', date_to='2018-12-13T18:00:00')

#df = eikon.get_timeseries("SPY",
 #       ['TR.IndexConstituentRIC',
  #          'TR.IndexConstituentName',
   #         'TR.IndexConstituentWeightPercent'],


data_grid, err = eikon.get_data("SPY",
	['TR.IndexConstituentRIC',
	{'TR.IndexConstituentWeightPercent':{'sort_dir':'desc'}}],
	{'SDate':'2018-12-14'}
	)
print(data_grid)
weight = data_grid.loc[:, "Weight percent"]
weight

import matplotlib.pyplot as plt
fig1, ax1 = plt.subplots()

ax1.pie(weight, shadow = True)
ax1.axis('equal')
plt.show()

NESN = eikon.get_timeseries(["NESN.S"], start_date="2014-01-06",
                                 end_date="2018-12-20", interval="daily")
plt.plot(NESN.loc[:, "CLOSE"])
Пример #14
0
import eikon as ek  # the Eikon Python wrapper package
import re
import time
import datetime
import os
import pandas as pd
import eventlet
eventlet.monkey_patch()
#set_app_id function being deprecated
eikon_app_id = 'fb1f0ff6cf794376af6ff9f29926d3fb17997843' #paste real app id
ek.set_app_key(eikon_app_id)

print('Eikon connected')

#range of dates
start = datetime.datetime.strptime("2018-02-28", "%Y-%m-%d")
end = datetime.datetime.strptime("2019-06-1", "%Y-%m-%d")
date_generated = [start + datetime.timedelta(days=x) for x in range((end-start).days)][::-1]

rics = set(pd.read_csv('constituents_matched.csv', sep=',')['reuters'])
# #find not done yet
with open('done.txt', 'r') as f:
    notdone = set(f.read().strip().split('\n')[:-100])

rics -= notdone

print('Updating {} companies'.format(str(len(rics))))


def _handle_time(e, event):
    if hasattr(e, 'message'):
Пример #15
0
import eikon as ek
import pandas as pd

ek.set_app_key('02251fexxxxxxxxxxxxxxxxxxxxxxxxxxxxxfd2c')


constituents, err = ek.get_data(".FTSE", "TR.IndexConstituentRIC")

for company in constituents['Constituent RIC']:
    data, err = ek.get_data(company, ["TR.CompanyName", "TR.OfficerName(RNK=R1:R100)", "TR.OfficerTitle(RNK=R1:R100)"])
    data.to_csv("data/"+company+".csv")
Пример #16
0
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 16 12:20:19 2019

@author: Admin
"""

import eikon as ek
ek.set_app_key('88728d9ceb094a57aaa16f1bdceb8d899dafab9a')
p1 = ek.get_timeseries(["JNJ.N"],
                       start_date="2010-02-01T15:04:05",
                       end_date="2017-02-05T15:04:05",
                       interval="tick")
Пример #17
0
import math
import eikon as ek  # the Eikon Python wrapper package
ek.set_app_key('0ed6a35e0937415eab446d3375bca7cf671d6b4c')
import numpy as np  # NumPy
import pandas as pd  # pandas
import cufflinks as cf  # Cufflinks
import configparser as cp
# import scipy.optimize as sco  # optimization routines
cf.set_config_file(offline=True, theme="white")
#Font Setting
from matplotlib.font_manager import FontProperties
import sys
if sys.platform.startswith('win'):
    FontPath = 'C:\\Windows\\Fonts\\meiryo.ttc'
elif sys.platform.startswith('darwin'):
    FontPath = '/System/Library/Fonts/ヒラノギ角ゴシック W4.ttc'
elif sys.platform.startswith('linux'):
    FontPath = '/usr/share/fonts/truetype/takao-gothic/TakaoExGothic.ttc'
jpfont = FontProperties(fname=FontPath)

import matplotlib.pyplot as plt
import matplotlib as mpl
import os
mpl_dirpath = os.path.dirname(mpl.__file__)
# デフォルトの設定ファイルのパス
default_config_path = os.path.join(mpl_dirpath, 'mpl-data', 'matplotlibrc')
# カスタム設定ファイルのパス
custom_config_path = os.path.join(mpl.get_configdir(), 'matplotlibrc')

import plotly.graph_objects as go
import chart_studio.plotly as py
Пример #18
0
import eikon as ek
ek.set_app_key('ba4e52456ba64a87be3b82001782535f159b564e')
print(
    ek.get_news_headlines('R:IBM.N',
                          date_from='2019-09-27T09:00:00',
                          date_to='2019-09-27T10:00:00'))
Пример #19
0
import eikon as ek
import configparser as cp
import pandas as pd

# Set global variables.
cfg = cp.ConfigParser()
cfg.read('eikon_cfg.cfg')
ek.set_app_key(cfg['eikon']['app_id'])


def get_time_series(rics: list, fields: list, start_date,
                    end_date) -> pd.DataFrame:
    """

    Retrieve time series data as Pandas DataFrame.
    :param rics: List of RIC:s to get.
    :param fields: List fields to get.
    :param start_date: Start date of time series.
    :param end_date: End date of time series.
    :return: Pandas DataFrame.
    """
    data = ek.get_timeseries(rics,
                             fields,
                             start_date=start_date,
                             calendar='native',
                             end_date=end_date,
                             interval='daily')
    return data
Пример #20
0
import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)

from datetime import datetime
from dateutil.relativedelta import relativedelta
import numpy as np
import pandas as pd
import eikon as ek

ek.set_app_key('bf38826c5e014c1cadf21425ee6e417d2b72fc9a')

Benchmark = '.FTSETWMC'
DATE = datetime.strptime('2020-12-31', r'%Y-%m-%d')
time_delta = relativedelta(months=-1)

RICs = list(pd.read_excel('data/TWMC100_RICs.xlsx', usecols='A')['RIC'])
df = pd.read_csv('data/TWMC100_20yr.csv', index_col='Date')

df2 = ek.get_timeseries(RICs + ['.TWII', Benchmark],
                        fields='CLOSE',
                        start_date='2020-10-31',
                        end_date=DATE,
                        interval='monthly',
                        corax='adjusted')
df2['Date'] = [DATE + 2 * time_delta, DATE + time_delta, DATE]
df2.set_index('Date', inplace=True)
df = df.append(df2)
df.to_csv('data/TWMC100_20yr.csv')

# check if all data are gotten!
        elif contextAction[sender]['actionName'] == "gettimeseries":
            resp_msg = '@' + sender + ' ' + gettimeseries(actionValue)
        elif contextAction[sender]['actionName'] == "changeconfidencelevel":
            confidence_level = float(actionValue)
            resp_msg = 'Confidence Level is now adjusted to ' + actionValue
        contextAction.pop(sender)
    return resp_msg


# =============================== Main Process ========================================

# Running the tutorial
if __name__ == '__main__':

    if use_data_from_eikon:
        try:
            # Set Eikon AppKey to reqeuest data from Eikon Desktop via Eikon Data API
            ek.set_app_key(eikon_data_api_app_key)
        except ek.EikonError as ex:
            print("Eikon Initialize Error:{}".format(ex.message))

    print('Load data and model for AHS Chatbot...')
    loadmodel()
    # Setting Python Logging
    logging.basicConfig(format='%(levelname)s:%(name)s :%(message)s',
                        level=log_level)
    print("ChatRoom is starting now. Type 'bye' to exit")
    while is_running:
        message = input("{} input:".format(userId))
        print("Bot:{}\n".format(process_message(message, userId)))
Пример #22
0
def main():
    # Files
    template = xw.Book.caller()
    report_path = os.path.join(os.path.dirname(__file__), 'report.xlsx')

    # Eikon setup
    conf = ConfigParser()
    conf.read(os.path.join(os.path.dirname(__file__), '..', 'eikon.conf'))
    ek.set_app_key(conf['eikon']['APP_KEY'])

    # Configuration
    date_format = template.sheets['Config']['date_format'].value
    if date_format == 'UK':
        fmt = '%e %b %Y'
    elif date_format == 'US':
        fmt = '%b %e, %Y'
    else:
        fmt = '%e %b %Y'

    instrument = template.sheets['Config']['instrument'].value
    start_date = dt.datetime(dt.datetime.now().year - 4, 1, 1)

    # Prices
    prices = ek.get_timeseries(instrument,
                               fields=['close'],
                               start_date=start_date,
                               end_date=dt.datetime.now(),
                               interval='weekly')
    end_date = prices.index[-1]

    # Summary
    summary, err = ek.get_data(instrument, [
        'TR.PriceClose', 'TR.Volume', 'TR.PriceLow', 'TR.PriceHigh',
        'TR.IndexName', 'TR.IndexCalculationCurrency'
    ])

    # Constituents
    constituents, err = ek.get_data(
        f'0#{instrument}',
        fields=['TR.CommonName', 'TR.PriceClose', 'TR.TotalReturnYTD'])
    constituents = constituents.set_index('Company Common Name')
    # Add empty columns so it goes into the desired Excel cells
    for i in range(0, 6):
        constituents.insert(loc=i, column='merged' + str(i), value=np.nan)
    constituents = constituents.drop(['Instrument'], axis=1)
    constituents = constituents.rename(columns={"YTD Total Return": "YTD %"})

    # Collect data
    data = dict(perf_start_date=start_date.strftime(fmt),
                perf_end_date=end_date.strftime(fmt),
                index_name=summary.loc[0, 'Index Name'],
                currency=summary.loc[0, 'Calculation Currency'],
                reference_date=dt.date.today().strftime(fmt),
                historical_perf=prices,
                constituents=constituents,
                price_close=float(summary['Price Close']),
                volume=float(summary['Volume']),
                price_low=float(summary['Price Low']),
                price_high=float(summary['Price High']))

    # Create the Excel report
    wb = create_report(template.fullname, report_path, **data)
Пример #23
0
import os.path
import numpy as np
import pandas as pd
import eikon as ek
ek.set_app_key('48f17fdf21184b0ca9c4ea8913a840a92b338918')
from .future_root_factory import FutureRootFactory

from pandas import read_hdf
from pandas import HDFStore,DataFrame

import os
dirname = os.path.dirname(__file__)

#run through loop to get data for all, keeping in mind 5 year limit to history
def put_to_hdf(df):
    hdf = HDFStore(dirname + "\_InstrumentData.5")
    hdf.put('InstrumentData', df, format='table', data_columns=True)
    hdf.close() # closes the file

columns =[
        'exchange_symbol',
        'root_symbol',
        'instrument_name',
        'underlying_name',
        'underlying_asset_class_id',
        'settle_start',
        'settle_end',
        'settle_method',
        'settle_timezone',
        'final_settle_start',
        'final_settle_end',
Пример #24
0
def get_news_and_sentiments(key_id, ticker_and_params, ticker, start_date,
                            end_date):
    ek.set_app_key(key_id)
    Date_range = pd.date_range(start=start_date, end=end_date, freq='D')
    date_range = []
    for i in range(len(Date_range) - 1):
        start_date = pd.to_datetime(Date_range)[i].strftime(
            "%Y-%m-%dT%H:%M:%S")
        end_date = pd.to_datetime(Date_range)[i +
                                              1].strftime("%Y-%m-%dT%H:%M:%S")
        date_range.append([])
        for j in range(1):
            date_range[i].append(start_date)
            date_range[i].append(end_date)
    example_data = pd.DataFrame()
    for i in range(len(date_range)):
        example_data = example_data.append(ek.get_news_headlines(
            f'{ticker_and_params}',
            count=10,
            date_from=date_range[i][0],
            date_to=date_range[i][1]),
                                           ignore_index=False)
    news = example_data
    stories = []
    for i, storyId in enumerate(news['storyId']):
        try:
            html = ek.get_news_story(storyId)
            story = BeautifulSoup(html, 'html5lib').get_text()
            stories.append(story)
        except:
            stories.append('')
    news['story'] = stories
    ## Sentiment Over Time
    sentiment = pd.DataFrame()
    sid = SentimentIntensityAnalyzer()
    for storyId in news['storyId']:
        row = news[news['storyId'] == storyId]
        scores = sid.polarity_scores(row['story'][0])
        sentiment = sentiment.append(
            pd.DataFrame(scores, index=[row['versionCreated'][0]]))
    sentiment.index = pd.DatetimeIndex(sentiment.index)
    sentiment.sort_index(inplace=True)
    sentiment_list = list(sentiment['compound'])
    news['sentiment'] = sentiment_list
    #group by day
    dates_normal = []
    for i in range(len(news['versionCreated'])):
        dates_normal.append(news['versionCreated'][i].strftime("%Y-%m-%d"))
    dates_normal_2 = pd.to_datetime(dates_normal)
    news['dates_normal'] = dates_normal_2

    #save to csv
    news.to_csv(f"{ticker}_news.csv")
    daily_sentiments_listed = news.groupby(
        pd.Grouper(key="dates_normal",
                   freq="D"))['sentiment'].apply(list).reset_index()
    #Daily mood index
    DMI = []
    for i in range(len(daily_sentiments_listed['sentiment'])):
        pos = 0
        neg = 0

        for j in range(len(daily_sentiments_listed['sentiment'][i])):
            try:
                if daily_sentiments_listed['sentiment'][i][j] > 0:
                    pos += 1
                elif daily_sentiments_listed['sentiment'][i][j] < 0:
                    neg += 1
            except:
                pass
        DMI.append(np.log((1 + pos) / (1 + neg)))
    daily_sentiments_listed['DMI'] = DMI

    #Average Sentiment
    Average_S = []
    for i in range(len(daily_sentiments_listed['sentiment'])):
        Average_S.append(np.mean(daily_sentiments_listed['sentiment'][i]))
    daily_sentiments_listed['Average_Sentiment'] = pd.DataFrame(
        Average_S).fillna(0)

    #save sentiments to csv
    daily_sentiments_listed.to_csv(f"{ticker}_sentiment.csv", index=False)
    return daily_sentiments_listed, news
Пример #25
0
import quandl
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
import eikon as ek
import pandas as pd
import matplotlib.pyplot as plt
ek.set_app_key('b47a7929747c40149d93089db6b3e895a3f8bca5')
df = ek.get_timeseries(["CHRS.O"], start_date = "2001-10-10", end_date = "2019-02-05")
print(df)
df = df[['CLOSE']]
print(df)
forecast_out = 30
df['Prediction'] = df[['CLOSE']].shift(-forecast_out)
print(df)
X = np.array(df.drop(['Prediction'],1))
X = X[:-forecast_out]
print(X)
y = np.array(df['Prediction'])
y = y[:-forecast_out]
print(y)
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_rbf.fit(x_train, y_train)
svm_confidence = svr_rbf.score(x_test, y_test)
print("svm confidence: ", svm_confidence) 
lr = LinearRegression()
lr.fit(x_train, y_train)
lr_confidence = lr.score(x_test, y_test)
print("lr confidence: ", lr_confidence)
Пример #26
0
def logkey(n_clicks, value):
    if n_clicks != None:
        ek.set_app_key(value)
        ek.set_timeout(60 * 5)
        return 'Confirm: "{}"'.format(value)
Пример #27
0
def main():
    # Files
    template = xw.Book.caller()
    report_path = Path(template.fullname).resolve().parent / 'report.xlsx'

    # Eikon setup
    ek.set_app_key(os.getenv('EIKON_APP_KEY'))

    # Configuration
    date_format = template.sheets['Config']['date_format'].value
    if date_format == 'UK':
        fmt = '%e %b %Y'
    elif date_format == 'US':
        fmt = '%b %e, %Y'
    else:
        fmt = '%e %b %Y'

    instrument = template.sheets['Config']['instrument'].value
    start_date = dt.datetime(dt.datetime.now().year - 4, 1, 1)

    # Prices
    prices = ek.get_timeseries(instrument,
                               fields=['close'],
                               start_date=start_date,
                               end_date=dt.datetime.now(),
                               interval='weekly')
    end_date = prices.index[-1]

    # Summary
    summary, err = ek.get_data(instrument,
                               ['TR.PriceClose', 'TR.Volume', 'TR.PriceLow', 'TR.PriceHigh',
                                'TR.IndexName', 'TR.IndexCalculationCurrency'])

    # Constituents
    constituents, err = ek.get_data(f'0#{instrument}',
                                    fields=['TR.CommonName', 'TR.PriceClose', 'TR.TotalReturnYTD'])
    constituents = constituents.set_index('Company Common Name')
    # Add empty columns so it goes into the desired Excel cells
    for i in range(6):
        constituents.insert(loc=i, column='merged' + str(i), value=np.nan)
    constituents = constituents.drop(['Instrument'], axis=1)
    constituents = constituents.rename(columns={"YTD Total Return": "YTD %"})
    constituents = constituents.sort_values("YTD %", ascending=False)

    # Collect data
    data = dict(
        perf_start_date=start_date.strftime(fmt),
        perf_end_date=end_date.strftime(fmt),
        index_name=summary.loc[0, 'Index Name'],
        currency=summary.loc[0, 'Calculation Currency'],
        reference_date=dt.date.today().strftime(fmt),
        historical_perf=prices,
        constituents=constituents,
        price_close=float(summary['Price Close']),
        volume=float(summary['Volume']),
        price_low=float(summary['Price Low']),
        price_high=float(summary['Price High'])
    )

    # Create the Excel report
    app = template.app
    app.screen_updating = False

    wb = create_report(template.fullname,
                       report_path, app=app, **data)

    app.screen_updating = True
    wb.sheets.active["A1"].select()
Пример #28
0
def CalcNetChart(row_ids, data, children, value):
    if (row_ids != None) & (data != None):
        if (len(row_ids) > 0) & (len(data) > 0):

            ek.set_app_key(value)
            ek.set_timeout(60 * 5)

            data = pd.DataFrame(data)
            data = data[data.index.isin(row_ids)]
            data['Amount'] = data['Amount'].astype(float)
            data['Price'] = data['Price'].astype(float)
            data['Strike'] = data['Strike'].astype(float)
            data["Day"] = pd.to_datetime(data["Day"])
            data["Maturity"] = pd.to_datetime(data["Maturity"])

            data["Financial"] = data['Amount'] * data['Price']
            data["Financial"] = data["Financial"].round(2)

            spot = pd.DataFrame(json.loads(json.loads(str(children))['spot']))
            spot['TRDPRC_1'] = spot['TRDPRC_1'].astype(float)
            spot["TRADE_DATE"] = pd.to_datetime(spot["TRADE_DATE"])
            ssp = spot[
                spot["Instrument"] != "BRSELICD=CBBR"].TRDPRC_1.values[0]

            days = (data.apply(lambda row: businessDuration(
                startdate=row['Day'], enddate=row['Maturity'], unit='day'),
                               axis=1)).values
            days = list(set(days))

            vola, err = ek.get_data([
                spot[
                    spot["Instrument"] != "BRSELICD=CBBR"].Instrument.values[0]
            ], [
                'TR.Volatility5D', 'TR.Volatility10D', "TR.Volatility20D",
                "TR.Volatility30D", "TR.Volatility60D", "TR.Volatility90D"
            ])

            volaV = (sum((
                vola.T[0].values[1:] *
                (abs(np.array([5, 10, 20, 30, 60, 90]) - 15) + 1) /
                (sum(abs(np.array([5, 10, 20, 30, 60, 90]) - 15) + 1))))) / 100

            vola.columns = ['Instrument', 5, 10, 20, 30, 60, 90]
            vola[[5, 10, 20, 30, 60, 90]] = vola[[5, 10, 20, 30, 60, 90]] / 100
            days = list(np.unique(days))
            dists = []
            vollist = []
            for d in days:
                y_interp = scipy.interpolate.interp1d(
                    vola.columns[1:].astype(float),
                    vola.T[0].values[1:].astype(float))
                volaV = y_interp(d)
                Distrib = 1 - np.random.normal(0,
                                               (volaV / (252**0.5) * (d**0.5)),
                                               size=5000)
                Distrib = Distrib * ssp

                vollist.append(volaV)
                dists.append(Distrib)

            Price = dists[pd.DataFrame(dists).max(1).argmax()]
            Price.sort()
            net = []
            for k in range(len(data)):
                if data['Amount'].iloc[k] >= 0:
                    if "C" in data['type'].iloc[k]:
                        Rt = -data['Strike'].iloc[k] - data['Price'].iloc[
                            k] + Price
                        Rt[Rt <=
                           -data['Price'].iloc[k]] = -data['Price'].iloc[k]
                        Rt = Rt * abs(data['Amount'].iloc[k])
                        net.append(list(Rt))
                    else:
                        Rt = data['Strike'].iloc[k] - data['Price'].iloc[
                            k] - Price
                        Rt[Rt <=
                           -data['Price'].iloc[k]] = -data['Price'].iloc[k]
                        Rt = Rt * abs(data['Amount'].iloc[k])
                        net.append(list(Rt))

                else:
                    if "C" in data['type'].iloc[k]:
                        Rt = data['Strike'].iloc[k] + data['Price'].iloc[
                            k] - Price
                        Rt[Rt >= data['Price'].iloc[k]] = data['Price'].iloc[k]
                        Rt = Rt * abs(data['Amount'].iloc[k])
                        net.append(list(Rt))
                    else:
                        Rt = -data['Strike'].iloc[k] + data['Price'].iloc[
                            k] + Price
                        Rt[Rt >= data['Price'].iloc[k]] = data['Price'].iloc[k]
                        Rt = Rt * abs(data['Amount'].iloc[k])
                        net.append(list(Rt))

            pay = pd.DataFrame(net)
            pay.columns = Price
            pays = pay
            # print(pays.values)
            pay = pay.sum()

            tempTT = []
            for j in range(len(set(days))):
                tempT = []
                for s in range(len(data["Strike"])):
                    temp = Func.OpitionsPrice(
                        Price, data["Strike"].values.astype(float)[s],
                        spot[spot["Instrument"] == "BRSELICD=CBBR"].TRDPRC_1.
                        values[0].astype(float) / 100,
                        np.array(data['ImpVol'].values[j]) / 100, days[j])

                    if "C" in data["type"].values[s]:
                        temp = list(
                            (temp.ValorC.values - data['Price'].values[s]) *
                            data['Amount'].values[s])
                    else:
                        temp = list(
                            (temp.ValorP.values - data['Price'].values[s]) *
                            data['Amount'].values[s])

                    tempT.append(temp)

                tempTT.append(tempT)

            fig = go.FigureWidget(
                make_subplots(shared_xaxes=True,
                              specs=[[{
                                  "secondary_y": True
                              }]],
                              print_grid=False))
            trace3 = go.Scatter(name="0 line",
                                x=pay.index,
                                y=np.array([0 for i in Distrib]),
                                xaxis='x1',
                                yaxis='y2',
                                line=dict(color='black', width=2, dash='dash'))
            fig.add_trace(trace3, secondary_y=False)

            trace1 = go.Scatter(name="Payoff",
                                x=pay.index,
                                y=pay.values,
                                xaxis='x1',
                                yaxis='y2',
                                mode='lines',
                                fill='tozeroy')
            fig.add_trace(trace1, secondary_y=False)

            for i in range(len(tempTT)):
                trace5 = go.Scatter(name="Price - " + str(days[i]) + ' Days',
                                    x=pay.index,
                                    y=pd.DataFrame(tempTT[i]).sum().values,
                                    xaxis='x1',
                                    yaxis='y2',
                                    mode='lines')
                fig.add_trace(trace5, secondary_y=False)

            for lin, i in zip(pays.values, pays.index):
                trace4 = go.Scatter(name=data.Instrument.values[i],
                                    x=pay.index,
                                    y=lin,
                                    xaxis='x1',
                                    yaxis='y2',
                                    line=dict(width=2, dash='dash'))
                fig.add_trace(trace4, secondary_y=False)

            for i, j in zip(days, dists):
                trace2 = ff.create_distplot([j],
                                            [str(i) + " Days - Probabilidade"],
                                            bin_size=.5,
                                            curve_type='normal',
                                            show_hist=False,
                                            show_rug=False)
                fig.add_trace(trace2['data'][0], secondary_y=True)

            prob = round(sum(pay.values > 0) / len(Distrib) * 100, 2)
            return [fig, html.H6("Profit probability: " + str(prob) + "%")]

        else:
            fig = go.FigureWidget(
                make_subplots(shared_xaxes=True,
                              specs=[[{
                                  "secondary_y": True
                              }]],
                              print_grid=False))

            trace3 = go.Scatter(name="0 line",
                                x=[0],
                                y=[0],
                                xaxis='x1',
                                yaxis='y2',
                                line=dict(color='black', width=2, dash='dash'))

            fig.add_trace(trace3, secondary_y=False)

            return [fig, html.H6(str(0) + "%")]

    else:

        fig = go.FigureWidget(
            make_subplots(shared_xaxes=True,
                          specs=[[{
                              "secondary_y": True
                          }]],
                          print_grid=False))

        trace3 = go.Scatter(name="0 line",
                            x=[0],
                            y=[0],
                            xaxis='x1',
                            yaxis='y2',
                            line=dict(color='black', width=2, dash='dash'))

        fig.add_trace(trace3, secondary_y=False)

        return [fig, html.H6(str(0) + "%")]
Пример #29
0
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 29 15:14:04 2019

@author: Administrator
"""

import eikon as ek

ek.set_app_key('9559d6b91c084b348f50f9bcc0ef6a010b997405')

import pandas as pd
import eikon as ek

import numpy as np

ek.set_app_key('9559d6b91c084b348f50f9bcc0ef6a010b997405')

from datetime import date

start = '2004-1-1'
today = date.today().strftime('%Y-%m-%d')
firstday = '1999-12-30'

#reuters

start = '2004-1-1'

### TURKEY

turkey_yield_tickers = [
Пример #30
0
# Thomson Reuters Eikon API Implementation to track news
import os
from dotenv import load_dotenv
load_dotenv()

import eikon as ek
ek.set_app_key(os.getenv('EIKON_API_KEY'))
import pandas as pd


def get_news(topic, source, start_date, end_date, n_articles):
    '''
	To search a company, Append 'R:' in front of RIC (ticker followed by a dot and Echange ID (eg: TSLA.O))
	
	The following is a list of news sources and their respective code from Mexico. 

	mexican_sources = {
		'Mexico Ledger': 'MEXLED',
		'El Financiero': 'ELMEX',
		'El Economista': 'ELECOP',
		'La Jornada': 'LAMEX',
		'Mega News': 'MEGNEW',
		'Milenio': 'MILMEX',
		'El Nacional': 'ELNACI',
		'Expansion': 'EXPSPB',
		'Excelsior': 'EXCMEX',
		'Mural': 'MURMEX',
		'El Norte': 'ELNORT',
		'Estrategia': 'ESTMEX',
		'La I': 'LAIMEX',
		'Al Chile': 'ALCHIL',