def test_process_measurement_calls_predict_then_update_on_ekf_for_subsequent_LASER_measurements(self):
        self._ekf.predict = MagicMock()
        self._ekf.update = MagicMock()

        ekf_sequence = Mock()
        ekf_sequence.attach_mock(self._ekf.predict, 'predict')
        ekf_sequence.attach_mock(self._ekf.update, 'update')

        fusionEKF = FusionEKF(self._ekf, self._tools)

        meas_package = MeasurementPackage(1477010443000000, 
                                          MeasurementPackage.SensorType.LASER,
                                          Matrix([[0.463227], [0.607415]]))
        fusionEKF.process_measurement(meas_package)

        meas_package = MeasurementPackage(1477010443100000, 
                                          MeasurementPackage.SensorType.LASER,
                                          Matrix([[0.968521], [0.40545]]))
        fusionEKF.process_measurement(meas_package)

        expected_R = Matrix([[0.0225, 0],
                             [0, 0.0225]])
        expected_H = Matrix([[1, 0, 0, 0],
			                 [0, 1, 0, 0]])

        self.assertEqual(self._ekf._R.value, expected_R.value)
        self.assertEqual(self._ekf._H.value, expected_H.value)

        assert ekf_sequence.mock_calls == [call.predict(), call.update(Matrix([[0.968521], [0.40545]]))]
    def test_process_measurement_sets_F_and_Q_of_ekf_for_subsequent_measurements(self):
        fusionEKF = FusionEKF(self._ekf, self._tools)

        meas_package = MeasurementPackage(1477010443000000, 
                                          MeasurementPackage.SensorType.LASER,
                                          Matrix([[0.463227], [0.607415]]))
        fusionEKF.process_measurement(meas_package)

        meas_package = MeasurementPackage(1477010443100000, 
                                          MeasurementPackage.SensorType.LASER,
                                          Matrix([[0.968521], [0.40545]]))
        fusionEKF.process_measurement(meas_package)

        self.assertAlmostEqual(self._ekf._F.value[0][2], 0.1)
        self.assertAlmostEqual(self._ekf._F.value[1][3], 0.1)

        dt_2 = 0.01
        dt_3 = 0.001
        dt_4 = 0.0001

        #acceleration noise components
        noise_ax = 9
        noise_ay = 9

        #set the process covariance matrix Q
        #Lesson 5 Section 9
        expected_Q = Matrix([[dt_4/4*noise_ax, 0, dt_3/2*noise_ax, 0],
                             [0, dt_4/4*noise_ay, 0, dt_3/2*noise_ay],
			                 [dt_3/2*noise_ax, 0, dt_2*noise_ax, 0],
			                 [0, dt_3/2*noise_ay, 0, dt_2*noise_ay]])

        assert_array_almost_equal(self._ekf._Q.value, expected_Q.value)
    def test_calculate_rmse_returns0_if_estimations_size_is0(self):
        estimations = []
        ground_truth = []
        expected_rmse = Matrix([[]])
        expected_rmse.zero(4, 1)

        rmse = self._tools.calculate_rmse(estimations, ground_truth)

        self.assertEqual(rmse.value, expected_rmse.value,
                         "RMSE should be 0 when estimation size is 0.")
    def test_process_measurement_sets_x_of_ekf_if_first_measurement_is_LASER(self):
        meas_package = MeasurementPackage(0, 
                                          MeasurementPackage.SensorType.LASER,
                                          Matrix([[1], [1]]))

        fusionEKF = FusionEKF(self._ekf, self._tools)
        fusionEKF.process_measurement(meas_package)

        initial_x = Matrix([[1], [1], [0], [0]])

        self.assertEqual(self._ekf._x.value, initial_x.value)
    def test_calculate_jacobian_returns_correct_Hj_for_test_state(self):
        for state, expected_Hj in [(Matrix([[1], [2], [0.2], [0.4]]),
                                    Matrix([[0.447214, 0.894427, 0, 0],
                                            [-0.4, 0.2, 0, 0],
                                            [0, 0, 0.447214, 0.894427]]))]:
            with self.subTest():
                Hj = self._tools.calculate_jacobian(state)

                assert_array_almost_equal(
                    Hj.value,
                    expected_Hj.value,
                    err_msg="RMSE should be correctly calculated.")
    def test_process_measurement_sets_x_of_ekf_if_first_measurement_is_RADAR(self):
        ro = 1
        theta = 2

        meas_package = MeasurementPackage(0, 
                                          MeasurementPackage.SensorType.RADAR,
                                          Matrix([[ro], [theta], [0.5]]))

        fusionEKF = FusionEKF(self._ekf, self._tools)
        fusionEKF.process_measurement(meas_package)

        initial_x = Matrix([[ro*cos(theta)], [ro*sin(theta)], [0], [0]])

        self.assertEqual(self._ekf._x.value, initial_x.value)
    def test_calculate_jacobian_returns0_if_px_and_py_is0(self):
        state = Matrix([[]])
        state.zero(4, 1)
        expected_Hj = Matrix([[]])
        expected_Hj.zero(3, 4)

        Hj = self._tools.calculate_jacobian(state)

        self.assertEqual(Hj.value, expected_Hj.value,
                         "Jacobian should be 0 when px and py is 0.")
    def update_ekf(self, z):
        """Updates the state by using Extended Kalman Filter equations
   
        Args:
            z (:obj:`Matrix`): The measurement at k+1
        """
        """
        Todo:
            * update the state by using Extended Kalman Filter equations
        """
        #Lesson 5 Section 14
        px = self._x.value[0][0]
        py = self._x.value[1][0]
        vx = self._x.value[2][0]
        vy = self._x.value[3][0]

        rho = sqrt(px * px + py * py)
        theta = atan2(py, px)
        ro_dot = (px * vx + py * vy) / rho
        z_pred = Matrix([[rho], [theta], [ro_dot]])

        y = z - z_pred
        if (y.value[1][0] > pi):
            y.value[1][0] -= 2 * pi
        elif (y.value[1][0] < (-pi)):
            y.value[1][0] += 2 * pi

        #Lesson 5 Section 7
        Ht = self._H.transpose()
        S = self._H * self._P * Ht + self._R
        Si = S.inverse()
        PHt = self._P * Ht
        K = PHt * Si

        #new estimate
        self._x = self._x + (K * y)
        x_size = self._x.dimx
        I = Matrix([[]])
        I.identity(x_size)
        self._P = (I - K * self._H) * self._P
    def test_process_measurement_x_and_P_of_ekf_calculated_for_test_measurements(self):
        for measurements, expected_x, expected_P in [([MeasurementPackage(1477010443000000, 
                                                                          MeasurementPackage.SensorType.LASER,
                                                                          Matrix([[0.463227], [0.607415]])),
                                                       MeasurementPackage(1477010443100000, 
                                                                          MeasurementPackage.SensorType.LASER,
                                                                          Matrix([[0.968521], [0.40545]])),
                                                       MeasurementPackage(1477010443200000, 
                                                                          MeasurementPackage.SensorType.LASER,
                                                                          Matrix([[0.947752], [0.636824]])),
                                                       MeasurementPackage(1477010443300000, 
                                                                          MeasurementPackage.SensorType.LASER,
                                                                          Matrix([[1.42287], [0.264328]]))],
                                                      Matrix([[1.34291], [0.364408], [2.32002], [-0.722813]]),
                                                      Matrix([[0.0185328, 0, 0.109639, 0],
                                                              [0, 0.0185328, 0, 0.109639],
                                                              [0.109639, 0, 1.10798, 0],
                                                              [0, 0.109639, 0, 1.10798]]))]:
            with self.subTest():
                tools = Tools()
                ekf = KalmanFilter()
                
                fusionEKF = FusionEKF(ekf, tools)

                for measurement in measurements:
                    fusionEKF.process_measurement(measurement)

                assert_array_almost_equal(ekf._x.value, expected_x.value, decimal=2)
                assert_array_almost_equal(ekf._P.value, expected_P.value, decimal=1)
    def calculate_rmse(self, estimations, ground_truth):
        """
        Todo:
            * Calculate the RMSE here.
        """
        rmse = Matrix([[]])
        rmse.zero(4, 1)

        # check the validity of the following inputs:
        # * the estimation vector size should not be zero
        # * the estimation vector size should equal ground truth vector size
        if len(estimations) != len(ground_truth) or not estimations:
            print("Invalid estimation or ground_truth data")
            return rmse

        #accumulate squared residuals
        for i in range(len(estimations)):
            residual = estimations[i] - ground_truth[i]

            #coefficient-wise multiplication
            residual = residual.cwise_product(residual)
            rmse += residual

        #calculate the mean
        rmse.value = [[i[0] / len(estimations)] for i in rmse.value]

        #calculate the squared root
        rmse.value = [[sqrt(i[0])] for i in rmse.value]

        #return the result
        return rmse
    def calculate_jacobian(self, x_state):
        """
        Todo:
            * Calculate a Jacobian here.
        """
        Hj = Matrix([[]])
        Hj.zero(3, 4)
        #recover state parameters
        px = x_state.value[0][0]
        py = x_state.value[1][0]
        vx = x_state.value[2][0]
        vy = x_state.value[3][0]

        #pre-compute a set of terms to avoid repeated calculation
        c1 = px * px + py * py
        c2 = sqrt(c1)
        c3 = (c1 * c2)

        #check division by zero
        if (abs(c1) < 0.0001):
            print("CalculateJacobian () - Error - Division by Zero")
            return Hj

        #compute the Jacobian matrix
        Hj = Matrix([[(px / c2), (py / c2), 0, 0],
                     [-(py / c1), (px / c1), 0, 0],
                     [
                         py * (vx * py - vy * px) / c3,
                         px * (px * vy - py * vx) / c3, px / c2, py / c2
                     ]])

        return Hj
    def test_calculate_rmse_returns0_if_estimations_size_differ(self):
        estimations = [Matrix([[1], [1], [0.2], [0.1]])]
        ground_truth = [
            Matrix([[1.1], [1.1], [0.3], [0.2]]),
            Matrix([[2.1], [2.1], [0.4], [0.3]])
        ]
        expected_rmse = Matrix([[]])
        expected_rmse.zero(4, 1)

        rmse = self._tools.calculate_rmse(estimations, ground_truth)

        self.assertEqual(rmse.value, expected_rmse.value,
                         "RMSE should be 0 when estimation size differs.")
    def update(self, z):
        """Updates the state by using standard Kalman Filter equations

        Args:    
            z (:obj:`Matrix`): The measurement at k+1
        """
        """
        Todo:
            * update the state by using Kalman Filter equations
        """
        z_pred = self._H * self._x
        y = z - z_pred
        Ht = self._H.transpose()
        S = self._H * self._P * Ht + self._R
        Si = S.inverse()
        PHt = self._P * Ht
        K = PHt * Si

        #new estimate
        self._x = self._x + (K * y)
        x_size = self._x.dimx
        I = Matrix([[]])
        I.identity(x_size)
        self._P = (I - K * self._H) * self._P
    def __init__(self):
        """Constructor"""
        #: obj`Matrix`: state vector
        self._x = Matrix([[]])

        #: obj`Matrix`: state covariance matrix
        self._P = Matrix([[]])

        #: obj`Matrix`: state transition matrix
        self._F = Matrix([[]])

        #: obj`Matrix`: process covariance matrix
        self._Q = Matrix([[]])

        #: obj`Matrix`: measurement matrix
        self._H = Matrix([[]])

        #: obj`Matrix`: measurement covariance matrix
        self._R = Matrix([[]])
    def test_constructor_calls_init_on_ekf(self):
        self._ekf.init = MagicMock()

        fusionEKF = FusionEKF(self._ekf, self._tools)

        self._ekf.init.assert_called_with(
            Matrix([[0], [0], [0], [0]]),
            Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1000, 0],
                    [0, 0, 0, 1000]]),
            Matrix([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]]),
            Matrix([[1, 0, 0, 0], [0, 1, 0, 0]]),
            Matrix([[0.0225, 0], [0, 0.0225]]),
            Matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]))
    def test_calculate_rmse_returns_correct_rmse_for_test_estimations(self):
        for estimations, ground_truth, expected_rmse in [([
                Matrix([[1], [1], [0.2], [0.1]]),
                Matrix([[2], [2], [0.3], [0.2]]),
                Matrix([[3], [3], [0.4], [0.3]])
        ], [
                Matrix([[1.1], [1.1], [0.3], [0.2]]),
                Matrix([[2.1], [2.1], [0.4], [0.3]]),
                Matrix([[3.1], [3.1], [0.5], [0.4]])
        ], Matrix([[0.1], [0.1], [0.1], [0.1]]))]:
            with self.subTest():
                rmse = self._tools.calculate_rmse(estimations, ground_truth)

                assert_array_almost_equal(
                    rmse.value,
                    expected_rmse.value,
                    err_msg="RMSE should be correctly calculated.")
    def test_process_measurement_calls_predict_then_update_ekf_on_ekf_for_subsequent_RADAR_measurements(
            self):
        self._ekf.predict = MagicMock()
        self._ekf.update_ekf = MagicMock()
        self._tools.calculate_jacobian = MagicMock(return_value=Matrix(
            [[0.8, 0.6, 0, 0], [-0.6, 0.8, 0, 0], [0, 0, 0.8, 0.6]]))

        ekf_sequence = Mock()
        ekf_sequence.attach_mock(self._ekf.predict, 'predict')
        ekf_sequence.attach_mock(self._tools.calculate_jacobian,
                                 'calculate_jacobian')
        ekf_sequence.attach_mock(self._ekf.update_ekf, 'update_ekf')

        fusionEKF = FusionEKF(self._ekf, self._tools)

        meas_package = MeasurementPackage(
            1477010443050000, MeasurementPackage.SensorType.RADAR,
            Matrix([[0.898658], [0.617674], [1.7986]]))
        fusionEKF.process_measurement(meas_package)

        meas_package = MeasurementPackage(
            1477010443150000, MeasurementPackage.SensorType.RADAR,
            Matrix([[0.910574], [0.610537], [1.46233]]))
        fusionEKF.process_measurement(meas_package)

        expected_R = Matrix([[0.09, 0, 0], [0, 0.0009, 0], [0, 0, 0.09]])
        expected_H = Matrix([[0.8, 0.6, 0, 0], [-0.6, 0.8, 0, 0],
                             [0, 0, 0.8, 0.6]])

        self.assertEqual(self._ekf._R.value, expected_R.value)
        self.assertEqual(self._ekf._H.value, expected_H.value)

        assert ekf_sequence.mock_calls == [
            call.predict(),
            call.calculate_jacobian(
                Matrix([[0.7326109317880749], [0.5204492516937732], [0],
                        [0]])),
            call.update_ekf(Matrix([[0.910574], [0.610537], [1.46233]]))
        ]
class FusionEKF:
    def __init__(self, ekf, tools):
        """Constructor"""
        #: obj`KalmanFilter`: Kalman Filter update and prediction math lives in here.
        self._ekf = ekf
        #: obj`Tools`: tool object used to compute Jacobian and RMSE
        self._tools = tools
        #: bool: check whether the tracking toolbox was initialized or not (first measurement)
        self._is_initialized = False
        #: long: previous timestamp
        self._previous_timestamp = 0

        #initializing matrices
        self._R_laser = Matrix([[]])
        self._R_radar = Matrix([[]])
        self._H_laser_ = Matrix([[]])
        self._Hj = Matrix([[]])
        self._Hj.zero(3, 4)

        #measurement covariance matrix - laser
        self._R_laser = Matrix([[0.0225, 0], [0, 0.0225]])

        #measurement covariance matrix - radar
        self._R_radar = Matrix([[0.09, 0, 0], [0, 0.0009, 0], [0, 0, 0.09]])
        """
        Todo:
            * Finish initializing the FusionEKF.
            * Set the process and measurement noises
        """

        #initialize variables and matrices (x, F, H_laser, H_jacobian, P, etc.)
        #create a 4D state vector, we don't know yet the values of the x state
        x_in = Matrix([[]])
        x_in.zero(4, 1)

        #state covariance matrix P
        P_in = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1000, 0],
                       [0, 0, 0, 1000]])

        #measurement matrix
        self._H_laser = Matrix([[1, 0, 0, 0],
                                [0, 1, 0, 0]])  # From Lesson 5 Section 10.

        #the initial transition matrix F_
        F_in = Matrix([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]])

        Q_in = Matrix([[]])
        Q_in.zero(4, 4)

        self._ekf.init(x_in, P_in, F_in, self._H_laser, self._R_laser, Q_in)

    def process_measurement(self, measurement_pack):
        """Run the whole flow of the Kalman Filter from here."""
        """
        Initialization
        """
        if not self._is_initialized:
            """
            Todo:
                * Initialize the state ekf_.x_ with the first measurement.
                * Create the covariance matrix.
            
            You'll need to convert radar from polar to cartesian coordinates.
            """
            # first measurement
            print("EKF: ")
            self._ekf._x = Matrix([[1], [1], [1], [1]])

            #initialize the Kalman filter position vector with the first sensor measurements
            if measurement_pack._sensor_type == MeasurementPackage.SensorType.RADAR:
                """
                Convert radar from polar to cartesian coordinates and initialize state.
                """
                ro = measurement_pack._raw_measurements.value[0][0]
                theta = measurement_pack._raw_measurements.value[1][0]
                self._ekf._x = Matrix([[ro * cos(theta)], [ro * sin(theta)],
                                       [0], [0]])
            elif measurement_pack._sensor_type == MeasurementPackage.SensorType.LASER:
                """
                Initialize state.
                """
                #set the state with the initial location and zero velocity
                self._ekf._x = Matrix([
                    measurement_pack._raw_measurements.value[0],
                    measurement_pack._raw_measurements.value[1], [0], [0]
                ])

            self._previous_timestamp = measurement_pack._timestamp

            # done initializing, no need to predict or update
            self._is_initialized = True
            return
        """
        Prediction
        """
        """
        Todo:
            * Update the state transition matrix F according to the new elapsed time.
        
        Time is measured in seconds.

        Todo:
            * Update the process noise covariance matrix.
        
        Use noise_ax = 9 and noise_ay = 9 for your Q matrix.
        """
        # modify the F and Q matrices prior to the prediction step based on the
        # elapsed time between measurements
        # compute the time elapsed between the current and previous measurements

        dt = (measurement_pack._timestamp -
              self._previous_timestamp) / 1000000.0  #dt - expressed in seconds
        self._previous_timestamp = measurement_pack._timestamp

        dt_2 = dt * dt
        dt_3 = dt_2 * dt
        dt_4 = dt_3 * dt

        #Modify the F matrix so that the time is integrated
        #Lesson 5 Section 8
        self._ekf._F.value[0][2] = dt
        self._ekf._F.value[1][3] = dt

        #acceleration noise components
        noise_ax = 9
        noise_ay = 9

        #set the process covariance matrix Q
        #Lesson 5 Section 9
        self._ekf._Q = Matrix(
            [[dt_4 / 4 * noise_ax, 0, dt_3 / 2 * noise_ax, 0],
             [0, dt_4 / 4 * noise_ay, 0, dt_3 / 2 * noise_ay],
             [dt_3 / 2 * noise_ax, 0, dt_2 * noise_ax, 0],
             [0, dt_3 / 2 * noise_ay, 0, dt_2 * noise_ay]])

        self._ekf.predict()
        """
        Update
        """
        """
        Todo:
            * Use the sensor type to perform the update step.
            * Update the state and covariance matrices.
        """

        if measurement_pack._sensor_type == MeasurementPackage.SensorType.RADAR:
            # Radar updates

            #set ekf_.H_ by setting to Hj which is the calculated the jacobian
            #set ekf_.R_ by just using R_radar_

            self._Hj = self._tools.calculate_jacobian(self._ekf._x)
            self._ekf._H = self._Hj
            self._ekf._R = self._R_radar

            self._ekf.update_ekf(measurement_pack._raw_measurements)
        else:
            # Laser updates

            #set ekf_.H_ by just using H_laser_
            #set ekf_.R_ by just using R_laser_

            self._ekf._H = self._H_laser
            self._ekf._R = self._R_laser

            self._ekf.update(measurement_pack._raw_measurements)

        # print the output
        print("x_ = ", self._ekf._x)
        print("P_ = ", self._ekf._P)
    def process_measurement(self, measurement_pack):
        """Run the whole flow of the Kalman Filter from here."""
        """
        Initialization
        """
        if not self._is_initialized:
            """
            Todo:
                * Initialize the state ekf_.x_ with the first measurement.
                * Create the covariance matrix.
            
            You'll need to convert radar from polar to cartesian coordinates.
            """
            # first measurement
            print("EKF: ")
            self._ekf._x = Matrix([[1], [1], [1], [1]])

            #initialize the Kalman filter position vector with the first sensor measurements
            if measurement_pack._sensor_type == MeasurementPackage.SensorType.RADAR:
                """
                Convert radar from polar to cartesian coordinates and initialize state.
                """
                ro = measurement_pack._raw_measurements.value[0][0]
                theta = measurement_pack._raw_measurements.value[1][0]
                self._ekf._x = Matrix([[ro * cos(theta)], [ro * sin(theta)],
                                       [0], [0]])
            elif measurement_pack._sensor_type == MeasurementPackage.SensorType.LASER:
                """
                Initialize state.
                """
                #set the state with the initial location and zero velocity
                self._ekf._x = Matrix([
                    measurement_pack._raw_measurements.value[0],
                    measurement_pack._raw_measurements.value[1], [0], [0]
                ])

            self._previous_timestamp = measurement_pack._timestamp

            # done initializing, no need to predict or update
            self._is_initialized = True
            return
        """
        Prediction
        """
        """
        Todo:
            * Update the state transition matrix F according to the new elapsed time.
        
        Time is measured in seconds.

        Todo:
            * Update the process noise covariance matrix.
        
        Use noise_ax = 9 and noise_ay = 9 for your Q matrix.
        """
        # modify the F and Q matrices prior to the prediction step based on the
        # elapsed time between measurements
        # compute the time elapsed between the current and previous measurements

        dt = (measurement_pack._timestamp -
              self._previous_timestamp) / 1000000.0  #dt - expressed in seconds
        self._previous_timestamp = measurement_pack._timestamp

        dt_2 = dt * dt
        dt_3 = dt_2 * dt
        dt_4 = dt_3 * dt

        #Modify the F matrix so that the time is integrated
        #Lesson 5 Section 8
        self._ekf._F.value[0][2] = dt
        self._ekf._F.value[1][3] = dt

        #acceleration noise components
        noise_ax = 9
        noise_ay = 9

        #set the process covariance matrix Q
        #Lesson 5 Section 9
        self._ekf._Q = Matrix(
            [[dt_4 / 4 * noise_ax, 0, dt_3 / 2 * noise_ax, 0],
             [0, dt_4 / 4 * noise_ay, 0, dt_3 / 2 * noise_ay],
             [dt_3 / 2 * noise_ax, 0, dt_2 * noise_ax, 0],
             [0, dt_3 / 2 * noise_ay, 0, dt_2 * noise_ay]])

        self._ekf.predict()
        """
        Update
        """
        """
        Todo:
            * Use the sensor type to perform the update step.
            * Update the state and covariance matrices.
        """

        if measurement_pack._sensor_type == MeasurementPackage.SensorType.RADAR:
            # Radar updates

            #set ekf_.H_ by setting to Hj which is the calculated the jacobian
            #set ekf_.R_ by just using R_radar_

            self._Hj = self._tools.calculate_jacobian(self._ekf._x)
            self._ekf._H = self._Hj
            self._ekf._R = self._R_radar

            self._ekf.update_ekf(measurement_pack._raw_measurements)
        else:
            # Laser updates

            #set ekf_.H_ by just using H_laser_
            #set ekf_.R_ by just using R_laser_

            self._ekf._H = self._H_laser
            self._ekf._R = self._R_laser

            self._ekf.update(measurement_pack._raw_measurements)

        # print the output
        print("x_ = ", self._ekf._x)
        print("P_ = ", self._ekf._P)
Пример #20
0
def telemetry(sid, data):
    if data:
        j = data

        sensor_measurment = j["sensor_measurement"]

        meas_package = MeasurementPackage()
        tokens = sensor_measurment.split()

        i = 0
        # reads first element from the current line
        sensor_type = tokens[i]
        i += 1

        if (sensor_type == "L"):
            meas_package._sensor_type = MeasurementPackage.SensorType.LASER

            px = float(tokens[i])
            py = float(tokens[i + 1])
            meas_package._raw_measurements = Matrix([[px], [py]])
            timestamp = int(tokens[i + 2])
            meas_package._timestamp = timestamp
            i += 3
        elif (sensor_type == "R"):
            meas_package._sensor_type = MeasurementPackage.SensorType.RADAR

            ro = float(tokens[i])
            theta = float(tokens[i + 1])
            ro_dot = float(tokens[i + 2])
            meas_package._raw_measurements = Matrix([[ro], [theta], [ro_dot]])
            timestamp = int(tokens[i + 3])
            meas_package._timestamp = timestamp
            i += 4

        x_gt = float(tokens[i])
        y_gt = float(tokens[i + 1])
        vx_gt = float(tokens[i + 2])
        vy_gt = float(tokens[i + 3])

        gt_values = Matrix([[x_gt], [y_gt], [vx_gt], [vy_gt]])
        ground_truth.append(gt_values)

        #Call ProcessMeasurment(meas_package) for Kalman filter
        fusionEKF.process_measurement(meas_package)

        #Push the current estimated x,y positon from the Kalman filter's state vector

        p_x = fusionEKF._ekf._x.value[0][0]
        p_y = fusionEKF._ekf._x.value[1][0]
        v1 = fusionEKF._ekf._x.value[2][0]
        v2 = fusionEKF._ekf._x.value[3][0]

        estimate = Matrix([[p_x], [p_y], [v1], [v2]])

        estimations.append(estimate)

        rmse = tools.calculate_rmse(estimations, ground_truth)

        msgJson = {}
        msgJson["estimate_x"] = p_x
        msgJson["estimate_y"] = p_y
        msgJson["rmse_x"] = rmse.value[0][0]
        msgJson["rmse_y"] = rmse.value[1][0]
        msgJson["rmse_vx"] = rmse.value[2][0]
        msgJson["rmse_vy"] = rmse.value[3][0]
        #msg = "42[\"estimate_marker\"," + msgJson.dump() + "]"
        # print(msg)
        sio.emit('estimate_marker', data=msgJson, skip_sid=True)
    else:
        # NOTE: DON'T EDIT THIS.
        sio.emit('manual', data={}, skip_sid=True)
    def __init__(self, ekf, tools):
        """Constructor"""
        #: obj`KalmanFilter`: Kalman Filter update and prediction math lives in here.
        self._ekf = ekf
        #: obj`Tools`: tool object used to compute Jacobian and RMSE
        self._tools = tools
        #: bool: check whether the tracking toolbox was initialized or not (first measurement)
        self._is_initialized = False
        #: long: previous timestamp
        self._previous_timestamp = 0

        #initializing matrices
        self._R_laser = Matrix([[]])
        self._R_radar = Matrix([[]])
        self._H_laser_ = Matrix([[]])
        self._Hj = Matrix([[]])
        self._Hj.zero(3, 4)

        #measurement covariance matrix - laser
        self._R_laser = Matrix([[0.0225, 0], [0, 0.0225]])

        #measurement covariance matrix - radar
        self._R_radar = Matrix([[0.09, 0, 0], [0, 0.0009, 0], [0, 0, 0.09]])
        """
        Todo:
            * Finish initializing the FusionEKF.
            * Set the process and measurement noises
        """

        #initialize variables and matrices (x, F, H_laser, H_jacobian, P, etc.)
        #create a 4D state vector, we don't know yet the values of the x state
        x_in = Matrix([[]])
        x_in.zero(4, 1)

        #state covariance matrix P
        P_in = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1000, 0],
                       [0, 0, 0, 1000]])

        #measurement matrix
        self._H_laser = Matrix([[1, 0, 0, 0],
                                [0, 1, 0, 0]])  # From Lesson 5 Section 10.

        #the initial transition matrix F_
        F_in = Matrix([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]])

        Q_in = Matrix([[]])
        Q_in.zero(4, 4)

        self._ekf.init(x_in, P_in, F_in, self._H_laser, self._R_laser, Q_in)
class KalmanFilter:
    def __init__(self):
        """Constructor"""
        #: obj`Matrix`: state vector
        self._x = Matrix([[]])

        #: obj`Matrix`: state covariance matrix
        self._P = Matrix([[]])

        #: obj`Matrix`: state transition matrix
        self._F = Matrix([[]])

        #: obj`Matrix`: process covariance matrix
        self._Q = Matrix([[]])

        #: obj`Matrix`: measurement matrix
        self._H = Matrix([[]])

        #: obj`Matrix`: measurement covariance matrix
        self._R = Matrix([[]])

    def init(self, x_in, P_in, F_in, H_in, R_in, Q_in):
        """Initializes Kalman filter

        Args:
            x_in (:obj:`Matrix`): Initial state
            P_in (:obj:`Matrix`): Initial state covariance
            F_in (:obj:`Matrix`): Transition matrix
            H_in (:obj:`Matrix`): Measurement matrix
            R_in (:obj:`Matrix`): Measurement covariance matrix
            Q_in (:obj:`Matrix`): Process covariance matrix
        """
        self._x = x_in
        self._P = P_in
        self._F = F_in
        self._H = H_in
        self._R = R_in
        self._Q = Q_in

    def predict(self):
        """Predicts the state and the state covariance using the process model

        Args:
            delta_T (long): Time between k and k+1 in s
        """
        """
        Todo:
            * predict the state
        """
        self._x = self._F * self._x  # Lesson 5 Section 8
        Ft = self._F.transpose()
        self._P = self._F * self._P * Ft + self._Q  # Lesson 5 Section 9

    def update(self, z):
        """Updates the state by using standard Kalman Filter equations

        Args:    
            z (:obj:`Matrix`): The measurement at k+1
        """
        """
        Todo:
            * update the state by using Kalman Filter equations
        """
        z_pred = self._H * self._x
        y = z - z_pred
        Ht = self._H.transpose()
        S = self._H * self._P * Ht + self._R
        Si = S.inverse()
        PHt = self._P * Ht
        K = PHt * Si

        #new estimate
        self._x = self._x + (K * y)
        x_size = self._x.dimx
        I = Matrix([[]])
        I.identity(x_size)
        self._P = (I - K * self._H) * self._P

    def update_ekf(self, z):
        """Updates the state by using Extended Kalman Filter equations
   
        Args:
            z (:obj:`Matrix`): The measurement at k+1
        """
        """
        Todo:
            * update the state by using Extended Kalman Filter equations
        """
        #Lesson 5 Section 14
        px = self._x.value[0][0]
        py = self._x.value[1][0]
        vx = self._x.value[2][0]
        vy = self._x.value[3][0]

        rho = sqrt(px * px + py * py)
        theta = atan2(py, px)
        ro_dot = (px * vx + py * vy) / rho
        z_pred = Matrix([[rho], [theta], [ro_dot]])

        y = z - z_pred
        if (y.value[1][0] > pi):
            y.value[1][0] -= 2 * pi
        elif (y.value[1][0] < (-pi)):
            y.value[1][0] += 2 * pi

        #Lesson 5 Section 7
        Ht = self._H.transpose()
        S = self._H * self._P * Ht + self._R
        Si = S.inverse()
        PHt = self._P * Ht
        K = PHt * Si

        #new estimate
        self._x = self._x + (K * y)
        x_size = self._x.dimx
        I = Matrix([[]])
        I.identity(x_size)
        self._P = (I - K * self._H) * self._P
    def test_fusion_ekf_passes_project_rubric_for_dataset1(self):
        in_file_name_ = "../data/obj_pose-laser-radar-synthetic-input.txt"
        
        in_file = open(in_file_name_, newline='')
        data_reader = csv.reader(in_file, delimiter='\t', quotechar='|')

        tools = Tools()
        ekf = KalmanFilter()

        # Create a Fusion EKF instance
        fusionEKF = FusionEKF(ekf, tools)

        # used to compute the RMSE later
        estimations = []
        ground_truth =[]

        # prep the measurement packages (each line represents a measurement at a
        # timestamp)
        for row in data_reader:
            meas_package = MeasurementPackage()

            i = 0
            # reads first element from the current line
            sensor_type = row[i]
            i += 1

            if(sensor_type == "L"):
                # LASER MEASUREMENT

                # read measurements at this timestamp
                meas_package._sensor_type = MeasurementPackage.SensorType.LASER

                px = float(row[i])
                py = float(row[i+1])
                meas_package._raw_measurements = Matrix([[px], [py]])
                timestamp = int(row[i+2])
                meas_package._timestamp = timestamp
                i += 3
            elif (sensor_type == "R"):
                # RADAR MEASUREMENT

                # read measurements at this timestamp
                meas_package._sensor_type = MeasurementPackage.SensorType.RADAR

                ro = float(row[i])
                theta = float(row[i+1])
                ro_dot = float(row[i+2])
                meas_package._raw_measurements = Matrix([[ro], [theta], [ro_dot]])
                timestamp = int(row[i+3])
                meas_package._timestamp = timestamp
                i += 4

            # read ground truth data to compare later
            x_gt = float(row[i])
            y_gt = float(row[i+1])
            vx_gt = float(row[i+2])
            vy_gt = float(row[i+3])

            gt_values =  Matrix([[x_gt], [y_gt], [vx_gt], [vy_gt]])
            ground_truth.append(gt_values)

            fusionEKF.process_measurement(meas_package)
            p_x = fusionEKF._ekf._x.value[0][0]
            p_y = fusionEKF._ekf._x.value[1][0]
            v1  = fusionEKF._ekf._x.value[2][0]
            v2 = fusionEKF._ekf._x.value[3][0]

            estimate = Matrix([[p_x], [p_y], [v1], [v2]])

            estimations.append(estimate)

        # compute the accuracy (RMSE)
        expected_rmse = Matrix([[0.11], [0.11], [0.52], [0.52]])
        rmse = tools.calculate_rmse(estimations, ground_truth)
        assert_array_less(rmse.value, expected_rmse.value)
        
        in_file.close()
 def __init__(self, timestamp = 0, sensor_type = SensorType.LASER,
              raw_measurements = Matrix([[]])):
     self._timestamp =  timestamp
     self._sensor_type = sensor_type
     self._raw_measurements = raw_measurements