def _apply_agg(self, search_query): filters = self._get_agg_filters( search_query.get_context().iter_post_filters_with_meta(), {self.qf._name, self.name} ) aggs = {} if self._compute_enabled: aggs.update({ self._enabled_agg_name: agg.Nested( path=self.path, aggs={ self._filter_key_agg_name: agg.Filter( self.key_expression, aggs={ self._filter_value_agg_name: agg.Filter( self.value_field != None # noqa:E711 ) } ) } ) }) if self._compute_min_max: stat_aggs = { self._enabled_agg_name_stat: agg.Nested( path=self.path, aggs={ self._filter_key_agg_name: agg.Filter( self.key_expression, aggs={ self._min_agg_name: agg.Min(self.value_field), self._max_agg_name: agg.Max(self.value_field), } ) } ) } if filters: aggs.update({ self._filter_agg_name: agg.Filter( Bool.must(*filters), aggs=stat_aggs ) }) else: aggs.update(stat_aggs) return search_query.aggregations(**aggs)
def _apply_agg(self, search_query): exclude_tags = {self.qf._name} if self._conj_operator == QueryFilter.CONJ_OR: exclude_tags.add(self.name) filters = self._get_agg_filters( search_query.get_context().iter_post_filters_with_meta(), exclude_tags ) terms_agg = agg.Nested(path=self.path, aggs={ self._filter_key_agg_name: agg.Filter( self.key_expression, aggs={ self._filter_value_agg_name: agg.Terms( self.value_field, instance_mapper=self._instance_mapper, **self._agg_kwargs ) }, **self._agg_kwargs ) }) if filters: aggs = { self._filter_agg_name: agg.Filter( Bool.must(*filters), aggs={self._agg_name: terms_agg} ) } else: aggs = {self._agg_name: terms_agg} return search_query.aggregations(**aggs)
def test_aggs(self): f = DynamicDocument.fields a = agg.AggExpression() self.assertRaises(NotImplementedError, a.build_agg_result, {}) a = agg.Avg(f.price) self.assert_expression( a, { "avg": {"field": "price"} } ) res = a.build_agg_result({ 'value': 75.3 }) self.assertAlmostEqual(res.value, 75.3) res = a.build_agg_result({ 'value': None }) self.assertIs(res.value, None) aa = a.clone() self.assertIsNot(a, aa) self.assertEqual(a.__visit_name__, aa.__visit_name__) self.assertEqual(a.params, aa.params) a = agg.Min(f.price) self.assert_expression( a, { "min": {"field": "price"} } ) res = a.build_agg_result({ 'value': 38 }) self.assertAlmostEqual(res.value, 38) res = a.build_agg_result({ 'value': 1297167619690, 'value_as_string': '2011-02-08T12:20:19.690Z' }) self.assertAlmostEqual(res.value, 1297167619690) a = agg.Max(f.price) self.assert_expression( a, { "max": {"field": "price"} } ) res = a.build_agg_result({ 'value': 45693.5 }) self.assertAlmostEqual(res.value, 45693.5) a = agg.Stats(f.grade) self.assert_expression( a, { "stats": {"field": "grade"} } ) a = a.build_agg_result( { "count": 6, "min": 60, "max": 98, "avg": 78.5, "sum": 471 } ) self.assertEqual(a.count, 6) self.assertEqual(a.min, 60) self.assertEqual(a.max, 98) self.assertAlmostEqual(a.avg, 78.5) self.assertEqual(a.sum, 471) a = agg.ExtendedStats(f.grade) self.assert_expression( a, { "extended_stats": {"field": "grade"} } ) a = a.build_agg_result( { "count": 6, "min": 72, "max": 117.6, "avg": 94.2, "sum": 565.2, "sum_of_squares": 54551.51999999999, "variance": 218.2799999999976, "std_deviation": 14.774302013969987 } ) self.assertEqual(a.count, 6) self.assertEqual(a.min, 72) self.assertAlmostEqual(a.max, 117.6) self.assertAlmostEqual(a.avg, 94.2) self.assertAlmostEqual(a.sum, 565.2) self.assertAlmostEqual(a.sum_of_squares, 54551.51999999999) self.assertAlmostEqual(a.variance, 218.2799999999976) self.assertAlmostEqual(a.std_deviation, 14.774302013969987) percentiles_agg = agg.Percentiles(f.load_time, percents=[95, 99, 99.9]) self.assert_expression( percentiles_agg, { "percentiles": { "field": "load_time", "percents": [95, 99, 99.9] } } ) a = percentiles_agg.build_agg_result( { "values": { "95.0": 60, "99.0": 150, "99.9": 153, } } ) self.assertEqual( a.values, [(95.0, 60), (99.0, 150), (99.9, 153)], ) self.assertEqual(a.get_value(95), 60) self.assertEqual(a.get_value(95.0), 60) self.assertEqual(a.get_value(99), 150) self.assertEqual(a.get_value(99.0), 150) self.assertEqual(a.get_value(99.9), 153) a = percentiles_agg.build_agg_result( { "values": { "95.0": 60, "95.0_as_string": "60", "99.0": 150, "99.0_as_string": "150", "99.9": 153, "99.9_as_string": "153", } } ) self.assertEqual( a.values, [(95.0, 60), (99.0, 150), (99.9, 153)], ) self.assertEqual(a.get_value(95), 60) self.assertEqual(a.get_value(95.0), 60) self.assertEqual(a.get_value(99), 150) self.assertEqual(a.get_value(99.0), 150) self.assertEqual(a.get_value(99.9), 153) percentiles_agg = agg.Percentiles(f.load_time, percents=[50]) self.assert_expression( percentiles_agg, { "percentiles": { "field": "load_time", "percents": [50] } } ) a = percentiles_agg.build_agg_result( { "values": { "50.0": "NaN", } } ) self.assertEqual( len(a.values), 1 ) self.assertAlmostEqual( a.values[0][0], 50.0 ) self.assertTrue( math.isnan(a.values[0][1]) ) self.assertTrue(math.isnan(a.get_value(50))) self.assertTrue(math.isnan(a.get_value(50.0))) ranks_agg = agg.PercentileRanks(f.load_time, values=[14.8, 30]) self.assert_expression( ranks_agg, { "percentile_ranks": { "field": "load_time", "values": [14.8, 30.0] } } ) a = ranks_agg.build_agg_result( { "values": { "14.8": 12.32, "30": 100, } } ) self.assertEqual( a.values, [(14.8, 12.32), (30.0, 100)], ) self.assertEqual( a.values, [(14.8, 12.32), (30.0, 100)], ) self.assertAlmostEqual(a.get_percent(14.8), 12.32) self.assertAlmostEqual(a.get_percent(13.7 + 1.1), 12.32) self.assertAlmostEqual(a.get_percent(30), 100.0) self.assertAlmostEqual(a.get_percent(30.0), 100.0) a = ranks_agg.build_agg_result( { "values": { "14.8": 12.32, "14.8_as_string": "12.32", "30": 100, "30_as_string": "100", } } ) self.assertEqual( a.values, [(14.8, 12.32), (30.0, 100)], ) self.assertEqual( a.values, [(14.8, 12.32), (30.0, 100)], ) self.assertAlmostEqual(a.get_percent(14.8), 12.32) self.assertAlmostEqual(a.get_percent(13.7 + 1.1), 12.32) self.assertAlmostEqual(a.get_percent(30), 100.0) self.assertAlmostEqual(a.get_percent(30.0), 100.0) a = agg.Cardinality(f.author, precision_threshold=100) self.assert_expression( a, { "cardinality": { "field": "author", "precision_threshold": 100 } } ) a = a.build_agg_result( { "value": 184 } ) self.assertEqual(a.value, 184) a = agg.Global() self.assert_expression(a, {"global": {}}) a = a.build_agg_result( {"doc_count": 185} ) self.assertEqual(a.doc_count, 185) a = agg.Filter(f.company == 1) self.assert_expression(a, {"filter": {"term": {"company": 1}}}) a2 = a.clone() self.assertIsNot(a, a2) self.assert_expression(a2, {"filter": {"term": {"company": 1}}}) a = a.build_agg_result( {"doc_count": 148} ) self.assertEqual(a.doc_count, 148) a = agg.Terms(f.status) self.assert_expression( a, { "terms": {"field": "status"} } ) a1 = a.clone() self.assertIsNot(a, a1) a = a.build_agg_result( { 'buckets': [ {'doc_count': 7353499, 'key': 0}, {'doc_count': 2267139, 'key': 1}, {'doc_count': 1036951, 'key': 4}, {'doc_count': 438384, 'key': 2}, {'doc_count': 9594, 'key': 3}, {'doc_count': 46, 'key': 5} ] } ) self.assertEqual(len(a.buckets), 6) self.assertEqual(list(iter(a)), a.buckets) self.assertEqual(a.buckets[0].key, 0) self.assertEqual(a.buckets[0].doc_count, 7353499) self.assertEqual(repr(a.buckets[0]), '<Bucket key=0 doc_count=7353499>') self.assertIs(a.buckets[0], a.get_bucket(0)) self.assertEqual(a.buckets[1].key, 1) self.assertEqual(a.buckets[1].doc_count, 2267139) self.assertIs(a.buckets[1], a.get_bucket(1)) self.assertEqual(repr(a.buckets[1]), '<Bucket key=1 doc_count=2267139>') self.assertEqual(a.buckets[2].key, 4) self.assertEqual(a.buckets[2].doc_count, 1036951) self.assertIs(a.buckets[2], a.get_bucket(4)) self.assertEqual(repr(a.buckets[2]), '<Bucket key=4 doc_count=1036951>') self.assertEqual(a.buckets[3].key, 2) self.assertEqual(a.buckets[3].doc_count, 438384) self.assertIs(a.buckets[3], a.get_bucket(2)) self.assertEqual(repr(a.buckets[3]), '<Bucket key=2 doc_count=438384>') self.assertEqual(a.buckets[4].key, 3) self.assertEqual(a.buckets[4].doc_count, 9594) self.assertIs(a.buckets[4], a.get_bucket(3)) self.assertEqual(repr(a.buckets[4]), '<Bucket key=3 doc_count=9594>') self.assertEqual(a.buckets[5].key, 5) self.assertEqual(a.buckets[5].doc_count, 46) self.assertIs(a.buckets[5], a.get_bucket(5)) self.assertEqual(repr(a.buckets[5]), '<Bucket key=5 doc_count=46>') a = agg.Terms(f.is_visible, type=Boolean) self.assert_expression( a, { "terms": {"field": "is_visible"} } ) a = a.build_agg_result( { 'buckets': [ {'doc_count': 7, 'key': 'T'}, {'doc_count': 2, 'key': 'F'}, ] } ) self.assertEqual(len(a.buckets), 2) self.assertEqual(a.buckets[0].key, True) self.assertEqual(a.buckets[0].doc_count, 7) self.assertIs(a.buckets[0], a.get_bucket(True)) self.assertEqual(a.buckets[1].key, False) self.assertEqual(a.buckets[1].doc_count, 2) self.assertIs(a.buckets[1], a.get_bucket(False)) a = agg.Terms(f.category, type=List(Integer)) self.assert_expression( a, { "terms": {"field": "category"} } ) a = a.build_agg_result( { 'buckets': [ {'doc_count': 792, 'key': 28}, {'doc_count': 185, 'key': 3}, ] } ) self.assertEqual(len(a.buckets), 2) self.assertEqual(a.buckets[0].key, 28) self.assertEqual(a.buckets[0].doc_count, 792) self.assertIs(a.buckets[0], a.get_bucket(28)) self.assertEqual(a.buckets[1].key, 3) self.assertEqual(a.buckets[1].doc_count, 185) self.assertIs(a.buckets[1], a.get_bucket(3)) class ProductDocument(Document): is_visible = Field(Boolean) a = agg.Terms(ProductDocument.is_visible) self.assert_expression( a, { "terms": {"field": "is_visible"} } ) a = a.build_agg_result( { 'buckets': [ {'doc_count': 7, 'key': 'T'}, {'doc_count': 2, 'key': 'F'}, ] } ) self.assertEqual(len(a.buckets), 2) self.assertEqual(a.buckets[0].key, True) self.assertEqual(a.buckets[0].doc_count, 7) self.assertIs(a.buckets[0], a.get_bucket(True)) self.assertEqual(a.buckets[1].key, False) self.assertEqual(a.buckets[1].doc_count, 2) self.assertIs(a.buckets[1], a.get_bucket(False)) a = agg.SignificantTerms(f.crime_type) self.assert_expression( a, { "significant_terms": {"field": "crime_type"} } ) a = a.build_agg_result( { "doc_count": 47347, "buckets" : [ { "key": "Bicycle theft", "doc_count": 3640, "score": 0.371, "bg_count": 66799, }, { "key": "Mobile phone theft", "doc_count": 27617, "score": 0.0599, "bg_count": 53182, } ] } ) self.assertEqual(len(a.buckets), 2) self.assertEqual(a.buckets[0].key, 'Bicycle theft') self.assertEqual(a.buckets[0].doc_count, 3640) self.assertAlmostEqual(a.buckets[0].score, 0.371) self.assertEqual(a.buckets[0].bg_count, 66799) self.assertIs(a.buckets[0], a.get_bucket('Bicycle theft')) self.assertEqual(a.buckets[1].key, 'Mobile phone theft') self.assertEqual(a.buckets[1].doc_count, 27617) self.assertAlmostEqual(a.buckets[1].score, 0.0599) self.assertEqual(a.buckets[1].bg_count, 53182) self.assertIs(a.buckets[1], a.get_bucket('Mobile phone theft')) a = agg.Range( f.price, ranges=[{'to': 200}, {'from': 200, 'to': 1000}, {'from': 1000}], type=Integer, ) self.assert_expression( a, { "range": { "field": "price", "ranges": [ {"to": 200}, {"from": 200, "to": 1000}, {"from": 1000} ] } } ) a1 = a.clone() self.assertIsNot(a1, a) a = a.build_agg_result( { "buckets": [ { "to": 200, "doc_count": 12 }, { "from": 200, "to": 1000, "doc_count": 197 }, { "from": 1000, "doc_count": 8 } ] } ) self.assertEqual(len(a.buckets), 3) self.assertEqual(a.buckets[0].doc_count, 12) self.assertEqual(a.buckets[1].doc_count, 197) self.assertEqual(a.buckets[2].doc_count, 8) a = agg.Filters([Term(f.body, 'error'), Term(f.body, 'warning')]) self.assert_expression( a, { "filters": { "filters": [ {"term": {"body": "error"}}, {"term": {"body": "warning"}} ] } } ) a = a.build_agg_result( { "buckets": [ { "doc_count" : 34 }, { "doc_count" : 439 }, ] } ) self.assertEqual(len(a.buckets), 2) self.assertIs(a.buckets[0].key, None) self.assertEqual(a.buckets[0].doc_count, 34) self.assertIs(a.buckets[1].key, None) self.assertEqual(a.buckets[1].doc_count, 439) self.assertIs(a.get_bucket(None), None) a = agg.Filters(Params(errors=Term(f.body, 'error'), warnings=Term(f.body, 'warning'))) self.assert_expression( a, { "filters": { "filters": { "errors": {"term": {"body": "error"}}, "warnings": {"term": {"body": "warning"}} } } } ) a = a.build_agg_result( { "buckets": { "errors": { "doc_count" : 34 }, "warnings": { "doc_count" : 439 }, } } ) self.assertEqual(len(a.buckets), 2) self.assertIs(a.buckets[0].key, 'errors') self.assertEqual(a.buckets[0].doc_count, 34) self.assertIs(a.buckets[0], a.get_bucket('errors')) self.assertIs(a.buckets[1].key, 'warnings') self.assertEqual(a.buckets[1].doc_count, 439) self.assertIs(a.buckets[1], a.get_bucket('warnings')) a = agg.Nested(f.resellers, aggs={'min_price': agg.Min(f.resellers.price)}) self.assert_expression( a, { "nested": {"path": "resellers"}, "aggregations": { "min_price": {"min": {"field": "resellers.price"}} } } ) a = a.build_agg_result( { "min_price": { "value" : 350 } } ) self.assertEqual(a.get_aggregation('min_price').value, 350) a = agg.Nested( f.resellers, aggs={"resellers": agg.Terms( f.resellers.id, aggs={"reverse": agg.ReverseNested( f.resellers, aggs={"reseller_volume": agg.Sum(f.price)} )})}) self.assert_expression( a, { "nested": {"path": "resellers"}, "aggregations": { "resellers": { "terms": {"field": "resellers.id"}, "aggregations": { "reverse": { "reverse_nested": {"path": "resellers"}, "aggregations": { "reseller_volume": { "sum": {"field": "price"} } } } } } } } ) a = a.build_agg_result( { "doc_count": 100, "resellers": { "buckets": [ { "key": 1122, "doc_count": 48, "reverse": { "reseller_volume": {"value": 500100} } }, { "key": 2233, "doc_count": 52, "reverse": { "reseller_volume": {"value": 100500} } } ] } } ) self.assertEqual( a .get_aggregation("resellers") .buckets[1] .get_aggregation("reverse") .get_aggregation("reseller_volume") .value, 100500 ) a = agg.Sampler(shard_size=1000, aggs={'avg_price': agg.Avg(f.price)}) self.assert_expression( a, { "sampler": {"shard_size": 1000}, "aggregations": { "avg_price": {"avg": {"field": "price"}} } } ) a = a.build_agg_result( { "doc_count": 1000, "avg_price": { "value" : 750 } } ) self.assertEqual(a.doc_count, 1000) self.assertEqual(a.get_aggregation('avg_price').value, 750) # complex aggregation with sub aggregations a = agg.Global() a = a.aggs({ 'selling_type': agg.Terms( f.selling_type, aggs={ 'price_avg': agg.Avg(f.price), 'price_min': agg.Min(f.price), 'price_max': agg.Max(f.price), 'price_hist': agg.Histogram(f.price, interval=50), } ), 'price_avg': agg.Avg(f.price), } ) self.assert_expression( a, { "global": {}, "aggregations": { "selling_type": { "terms": {"field": "selling_type"}, "aggregations": { "price_avg": {"avg": {"field": "price"}}, "price_min": {"min": {"field": "price"}}, "price_max": {"max": {"field": "price"}}, "price_hist": { "histogram": { "field": "price", "interval": 50, 'min_doc_count': 1 } }, } }, "price_avg": {"avg": {"field": "price"}} } } ) a = a.build_agg_result( { 'doc_count': 100, 'selling_type': { 'buckets': [ { 'key': 'retail', 'doc_count': 70, 'price_avg': {'value': 60.5}, 'price_min': {'value': 1.1}, 'price_max': {'value': 83.4}, 'price_hist': { 'buckets': [ {'key': 50, 'doc_count': 60}, {'key': 100, 'doc_count': 7}, {'key': 150, 'doc_count': 3}, ] }, }, { 'key': 'wholesale', 'doc_count': 30, 'price_avg': {'value': 47.9}, 'price_min': {'value': 20.1}, 'price_max': {'value': 64.8}, 'price_hist': { 'buckets': [ {'key': 0, 'doc_count': 17}, {'key': 50, 'doc_count': 5}, {'key': 100, 'doc_count': 6}, {'key': 150, 'doc_count': 2}, ] }, }, ], }, 'price_avg': {'value': 56.3}, } ) self.assertEqual(a.doc_count, 100) type_agg = a.get_aggregation('selling_type') self.assertEqual(len(type_agg.buckets), 2) self.assertEqual(type_agg.buckets[0].key, 'retail') self.assertEqual(type_agg.buckets[0].doc_count, 70) self.assertIs(type_agg.buckets[0], type_agg.get_bucket('retail')) self.assertAlmostEqual(type_agg.buckets[0].get_aggregation('price_avg').value, 60.5) self.assertAlmostEqual(type_agg.buckets[0].get_aggregation('price_min').value, 1.1) self.assertAlmostEqual(type_agg.buckets[0].get_aggregation('price_max').value, 83.4) price_hist_agg = type_agg.buckets[0].get_aggregation('price_hist') self.assertEqual(price_hist_agg.buckets[0].key, 50) self.assertEqual(price_hist_agg.buckets[0].doc_count, 60) self.assertIs(price_hist_agg.buckets[0], price_hist_agg.get_bucket(50)) self.assertEqual(price_hist_agg.buckets[1].key, 100) self.assertEqual(price_hist_agg.buckets[1].doc_count, 7) self.assertIs(price_hist_agg.buckets[1], price_hist_agg.get_bucket(100)) self.assertEqual(price_hist_agg.buckets[2].key, 150) self.assertEqual(price_hist_agg.buckets[2].doc_count, 3) self.assertIs(price_hist_agg.buckets[2], price_hist_agg.get_bucket(150)) self.assertEqual(len(price_hist_agg.buckets), 3) self.assertEqual(type_agg.buckets[1].key, 'wholesale') self.assertEqual(type_agg.buckets[1].doc_count, 30) self.assertIs(type_agg.buckets[1], type_agg.get_bucket('wholesale')) self.assertAlmostEqual(type_agg.buckets[1].get_aggregation('price_avg').value, 47.9) self.assertAlmostEqual(type_agg.buckets[1].get_aggregation('price_min').value, 20.1) self.assertAlmostEqual(type_agg.buckets[1].get_aggregation('price_max').value, 64.8) price_hist_agg = type_agg.buckets[1].get_aggregation('price_hist') self.assertEqual(len(price_hist_agg.buckets), 4) self.assertEqual(price_hist_agg.buckets[0].key, 0) self.assertEqual(price_hist_agg.buckets[0].doc_count, 17) self.assertIs(price_hist_agg.buckets[0], price_hist_agg.get_bucket(0)) self.assertEqual(price_hist_agg.buckets[1].key, 50) self.assertEqual(price_hist_agg.buckets[1].doc_count, 5) self.assertIs(price_hist_agg.buckets[1], price_hist_agg.get_bucket(50)) self.assertEqual(price_hist_agg.buckets[2].key, 100) self.assertEqual(price_hist_agg.buckets[2].doc_count, 6) self.assertIs(price_hist_agg.buckets[2], price_hist_agg.get_bucket(100)) self.assertEqual(price_hist_agg.buckets[3].key, 150) self.assertEqual(price_hist_agg.buckets[3].doc_count, 2) self.assertIs(price_hist_agg.buckets[3], price_hist_agg.get_bucket(150)) self.assertEqual(a.get_aggregation('price_avg').value, 56.3) class QuestionDocument(DynamicDocument): pass class PaperDocument(DynamicDocument): pass question_mapper = Mock( return_value={ '602679': Mock(id=602679, type='question'), '602678': Mock(id=602678, type='question'), } ) paper_mapper = Mock(return_value={'602672': Mock(id=602672, type='paper')}) top_hits_agg = agg.Terms( f.tags, size=3, aggs={ 'top_tags_hits': agg.TopHits( size=1, sort=f.last_activity_date.desc(), _source={'include': f.title}, instance_mapper={ QuestionDocument: question_mapper, PaperDocument: paper_mapper }, ) } ) self.assert_expression( top_hits_agg, { "terms": { "field": "tags", "size": 3 }, "aggregations": { "top_tags_hits": { "top_hits": { "sort": { "last_activity_date": "desc" }, "_source": { "include": "title" }, "size" : 1 } } } } ) a = top_hits_agg.build_agg_result( { "buckets": [ { "key": "windows-7", "doc_count": 25365, "top_tags_hits": { "hits": { "total": 25365, "max_score": 1, "hits": [ { "_index": "stack", "_type": "question", "_id": "602679", "_score": 1, "_source": { "title": "Windows port opening" }, "sort": [ 1370143231177 ] } ] } } }, { "key": "linux", "doc_count": 18342, "top_tags_hits": { "hits": { "total": 18342, "max_score": 1, "hits": [ { "_index": "stack", "_type": "paper", "_id": "602672", "_score": 1, "_source": { "title": "Ubuntu RFID Screensaver lock-unlock" }, "sort": [ 1370143379747 ] } ] } } }, { "key": "windows", "doc_count": 18119, "top_tags_hits": { "hits": { "total": 18119, "max_score": 1, "hits": [ { "_index": "stack", "_type": "question", "_id": "602678", "_score": 1, "_source": { "title": "If I change my computers date / time, what could be affected?" }, "sort": [ 1370142868283 ] } ] } } } ] }, doc_cls_map={'question': QuestionDocument, 'paper': PaperDocument}, mapper_registry={}, ) self.assertEqual(len(a.buckets), 3) self.assertEqual(a.buckets[0].doc_count, 25365) self.assertEqual(a.buckets[0].key, 'windows-7') top_tags_agg = a.buckets[0].get_aggregation('top_tags_hits') self.assertEqual(top_tags_agg.total, 25365) self.assertEqual(top_tags_agg.max_score, 1) self.assertEqual(len(top_tags_agg.hits), 1) self.assertIsInstance(top_tags_agg.hits[0], QuestionDocument) self.assertEqual(top_tags_agg.hits[0]._index, 'stack') self.assertEqual(top_tags_agg.hits[0]._type, 'question') self.assertEqual(top_tags_agg.hits[0]._score, 1) self.assertEqual(top_tags_agg.hits[0]._id, '602679') self.assertEqual(top_tags_agg.hits[0].title, 'Windows port opening') self.assertEqual(top_tags_agg.hits[0].instance.id, 602679) self.assertEqual(top_tags_agg.hits[0].instance.type, 'question') self.assertEqual(a.buckets[1].doc_count, 18342) self.assertEqual(a.buckets[1].key, 'linux') top_tags_agg = a.buckets[1].get_aggregation('top_tags_hits') self.assertEqual(top_tags_agg.total, 18342) self.assertEqual(top_tags_agg.max_score, 1) self.assertEqual(len(top_tags_agg.hits), 1) self.assertIsInstance(top_tags_agg.hits[0], PaperDocument) self.assertEqual(top_tags_agg.hits[0]._index, 'stack') self.assertEqual(top_tags_agg.hits[0]._type, 'paper') self.assertEqual(top_tags_agg.hits[0]._score, 1) self.assertEqual(top_tags_agg.hits[0]._id, '602672') self.assertEqual(top_tags_agg.hits[0].title, 'Ubuntu RFID Screensaver lock-unlock') self.assertEqual(top_tags_agg.hits[0].instance.id, 602672) self.assertEqual(top_tags_agg.hits[0].instance.type, 'paper') self.assertEqual(a.buckets[2].doc_count, 18119) self.assertEqual(a.buckets[2].key, 'windows') top_tags_agg = a.buckets[2].get_aggregation('top_tags_hits') self.assertEqual(top_tags_agg.total, 18119) self.assertEqual(top_tags_agg.max_score, 1) self.assertEqual(len(top_tags_agg.hits), 1) self.assertIsInstance(top_tags_agg.hits[0], DynamicDocument) self.assertEqual(top_tags_agg.hits[0]._index, 'stack') self.assertEqual(top_tags_agg.hits[0]._type, 'question') self.assertEqual(top_tags_agg.hits[0]._score, 1) self.assertEqual(top_tags_agg.hits[0]._id, '602678') self.assertEqual(top_tags_agg.hits[0].title, 'If I change my computers date / time, what could be affected?') self.assertEqual(top_tags_agg.hits[0].instance.id, 602678) self.assertEqual(top_tags_agg.hits[0].instance.type, 'question') self.assertEqual(question_mapper.call_count, 1) self.assertEqual(paper_mapper.call_count, 1)