Пример #1
0
def main():
    name = "AmC"
    secBetaArr, secAntiBetaArr = bloader.loadPrmBeta("../data/gamma/" + name +
                                                     "_J19.txt")
    print(">>>>>>>>>> Loading primary beta distribution <<<<<<<<<<")

    mu_arr, sigma_arr = [], []

    for i in range(len(secBetaArr)):
        tmppe, tmpsigma = 0, 0
        for j in secBetaArr[i]:
            if j == 0:
                break
            tmppe += eloader.getNPE(j)
            tmpsigma += eloader.getSPE(j) * eloader.getSPE(j)
        for j in secAntiBetaArr[i]:
            if j == 0:
                break
            tmppe += eloader.getNPE(j) + 2 * 660.8
            tmpsigma += eloader.getSPE(j) * eloader.getSPE(j) + 2 * 27.02**2

        tmpsigma = np.sqrt(tmpsigma)

        mu_arr.append(tmppe)
        sigma_arr.append(tmpsigma)

    hist = ROOT.TH2D("hist", "", 100, 8300, 9300, 100, 70, 130)
    for i, j in zip(mu_arr, sigma_arr):
        hist.Fill(i, j)

    hist.SaveAs("AmC_model.root")
Пример #2
0
def preSampling_inGPU(secBeta, secAntiBeta, indexarr, npearr, spearr, muarr, sigmaarr):
    # shared memory usage :
    sNPE = cuda.shared.array(shape=(1, 845), dtype=float32)
    sSPE = cuda.shared.array(shape=(1, 845), dtype=float32)

    x, y = cuda.grid(2)

    # threading positioning
    tx = cuda.threadIdx.x
    ty = cuda.blockIdx.x
    bw = cuda.blockDim.x
    pos = tx + ty * bw

    if pos < muarr.size:
        ii = indexarr[pos]
        tmpmu, tmpsigma = 0, 0
        for j in secBeta[ii, :]:
            if j == 0:
                break
            tmpmu += eloader.getNPE(j)
            tmpsigma += eloader.getSPE(j)**2
        for j in secAntiBeta[ii, :]:
            if j == 0:
                break
            tmpmu += ( eloader.getNPE(j) + 660.8*2 )
            tmpsigma += ( eloader.getSPE(j)**2 + 2*27.07**2 )
        tmpsigma = np.sqrt(tmpsigma)
        muarr[pos] = tmpmu
        sigmaarr[pos] = tmpsigma
    cuda.syncthreads()
Пример #3
0
def preSampling(secBeta, secAntiBeta):
    st = time.time()
    Nevents = 5000
    mu_arr, sigma_arr = [], []
    sample_id = np.random.randint(0, 5000, size=Nevents)
    for ii in sample_id:
        tmpmu, tmpsigma = 0, 0
        for j in secBeta[ii, :]:
            if j == 0:
                break
            tmpmu += eloader.getNPE(j)
            tmpsigma += eloader.getSPE(j)**2
        for j in secAntiBeta[ii, :]:
            if j == 0:
                break
            tmpmu += ( eloader.getNPE(j) + 660.8*2 )
            tmpsigma += ( eloader.getSPE(j)**2 + 2*27.07**2 )
        tmpsigma = np.sqrt(tmpsigma)
        mu_arr.append(tmpmu)
        sigma_arr.append(tmpsigma)
    et = time.time()
    mu_arr = np.array(mu_arr)
    sigma_arr = np.array(sigma_arr)
    print("Time consumed during pre-sampling: %s s" %(et-st))
    return mu_arr, sigma_arr
Пример #4
0
    def calcSingleEvent(self):
        st = time.time()
        if self.loadPrmBetaFlag == False:
            self.loadPrmBeta()
        mu_arr, sigma_arr = [], []
        smu_arr, ssigma_arr = [], []
        cmu_arr, csigma_arr = [], []
        self.nSamples = len(self.prmBetaArr)
        for i in range(len(self.prmBetaArr)):
            tmpnpe, tmpspe = 0, 0
            tmpcnpe, tmpsnpe = 0, 0
            tmpcspe, tmpsspe = 0, 0
            for j in self.prmBetaArr[i]:
                if j == 0:
                    break
                if self.mode == "Truth":
                    tmpnpe += (eloader.getNPE(j))
                    tmpspe += (eloader.getSPE(j)**2)

                if self.mode == "Fit":
                    tmpnpe += (self.getFitNPE(j))
                    tmpspe += (self.getFitSPE(j)**2)
                    tmpcnpe += self.getFitCNPE(j)
                    tmpsnpe += self.getFitSNPE(j)

            for j in self.prmAntiBetaArr[i]:
                if j == 0:
                    break
                if self.mode == "Truth":
                    tmpnpe += (eloader.getNPE(j) + 2 * 660.8)
                    tmpspe += (eloader.getSPE(j)**2 + 27.07**2 * 2)
                if self.mode == "Fit":
                    tmpnpe += (self.getFitNPE(j) + 2 * 660.8)
                    tmpspe += (self.getFitSPE(j)**2 + 27.07**2 * 2)
                    tmpcnpe += (self.getFitCNPE(j) + 2.49)
                    tmpsnpe += (self.getFitSNPE(j) + 2 * 660.8 - 2.49)

            mu_arr.append(tmpnpe)
            sigma_arr.append(np.sqrt(tmpspe))
            cmu_arr.append(tmpcnpe)
            csigma_arr.append(np.sqrt(tmpcspe))
            smu_arr.append(tmpsnpe)
            ssigma_arr.append(np.sqrt(tmpsspe))

        mu_arr = np.array(mu_arr)
        sigma_arr = np.array(sigma_arr)
        cmu_arr = np.array(cmu_arr)
        csigma_arr = np.array(csigma_arr)
        smu_arr = np.array(smu_arr)
        ssigma_arr = np.array(ssigma_arr)

        et = time.time()
        #print("Primary beta dist calculation time : %.3f s" %(et-st))
        return mu_arr, sigma_arr, smu_arr, ssigma_arr, cmu_arr, csigma_arr
Пример #5
0
def main():

    es = 3134.078 / 2.223

    for k in range(315, 380, 1):
        # Load PrmBeta
        filename = "../data/gamma/Livermore-" + str(k) + ".txt"
        print(filename)
        prmBeta, prmAntiBeta = bloader.loadPrmBeta(filename)

        # calcSingleEvent :
        nSamples = 5000
        mu_arr, sigma_arr = [], []
        for i in range(nSamples):
            tmpnpe, tmpspe = 0, 0
            for j in prmBeta[i]:
                if j == 0:
                    break
                tmpnpe += (eloader.getNPE(j))
                tmpspe += (eloader.getSPE(j)**2)
            for j in prmAntiBeta[i]:
                if j == 0:
                    break
                tmpnpe += (eloader.getNPE(j) + 2 * 660.8)
                tmpspe += (eloader.getSPE(j)**2 + 27.07**2 * 2)

            mu_arr.append(tmpnpe)
            sigma_arr.append(np.sqrt(tmpspe))

        mu = np.array(mu_arr)
        sigma = np.array(sigma_arr)

        npe, spe = 0, 0
        sigma_part1, sigma_part2 = 0, 0
        for i in mu:
            npe += i
        npe = npe / nSamples
        for i, j in zip(mu, sigma):
            spe += (i - npe)**2 + j**2
            sigma_part1 += (i - npe)**2
            sigma_part2 += j**2

        spe = np.sqrt(spe / nSamples)
        sigma_part1 /= nSamples
        sigma_part2 /= nSamples

        print((k - 300) / 10., npe / es, spe / es)
Пример #6
0
def GammaPePred(secBeta, secAntiBeta):
    # two-times sampling alg here
    sc = 1.00
    calcpe = []
    ctime = []
    sample_id = np.random.randint(0, 5000, size=5000)
    for i in sample_id:
        st = time.time()
        tmppe = 0
        for j in secBeta[i]:
            if j == 0:
                break
            tmppe += random.gauss(eloader.getNPE(j), eloader.getSPE(j)*sc)
        for j in secAntiBeta[i]:
            if j == 0:
                break
            tmppe += random.gauss(eloader.getNPE(j), eloader.getSPE(j)*sc) + 2*random.gauss(660.8, 27.07*sc)
        calcpe.append(tmppe)
        et = time.time()
        ctime.append(et-st)
    return calcpe, ctime
Пример #7
0
def main():
    totpe, edep = [], []
    for i in range(1000, 1300, 1):
        filename = "/junofs/users/miaoyu/energy_model/production/J19v1r0-Pre4/B12/user-" + str(
            i) + ".root"
        print(filename)
        tmp_totpe, tmp_edep = readSim(filename)
        totpe.extend(tmp_totpe)
    for i in range(2000, 2100, 1):
        filename = "/junofs/users/miaoyu/energy_model/production/J19v1r0-Pre4/B12/user-" + str(
            i) + ".root"
        print(filename)
        tmp_totpe, tmp_edep = readSim(filename)
        edep.extend(tmp_edep)

    pe_pred, pe_pred1 = [], []
    for i in edep:
        sample = eloader.getNPE(i)
        sample1 = 1.126 * eloader.getSctNPE(i) - 0.812 * eloader.getSPE(i)
        #sample = random.gauss(eloader.getNPE(i), eloader.getSPE(i))
        #sample1 = random.gauss((1.126* eloader.getSctNPE(i) - 0.812*eloader.getCerNPE(i)), eloader.getSPE(i))
        pe_pred.append(sample)
        pe_pred1.append(sample1)

    plt.hist(totpe,
             bins=300,
             range=(0, 20000),
             density=True,
             histtype="step",
             label="simulation")
    plt.hist(pe_pred,
             bins=300,
             range=(0, 20000),
             density=True,
             histtype="step",
             label="kA=1, kC=1 (nominal)")
    plt.hist(pe_pred1,
             bins=300,
             range=(0, 20000),
             density=True,
             histtype="step",
             label="kA=1.126, kC=-0.812")

    plt.legend()
    plt.xlabel("# P.E.")
    plt.tight_layout()
    #plt.savefig("B12_totpe.pdf")
    plt.show()
Пример #8
0
    #print(el.getFitResol(Evis[-1]), el.getFitCerSigma(Evis[-1]), el.getFitSctSigma(Evis[-1]), el.getFitCov(Evis[-1]))

resFit = np.array(resFit)
resConstFit = np.array(resConstFit)
resCerFit = np.array(resCerFit)
resSctFit = np.array(resSctFit)
resCovFit = np.array(resCovFit)
resCerConstFit = np.array(resCerConstFit)
resCovConstFit = np.array(resCovConstFit)

# Load Truth Points
NPE_truth, SPE_truth = [], []
for i in Edep:
    NPE_truth.append(el.getNPE(i))
    SPE_truth.append(el.getSPE(i))

NPE_truth = np.array(NPE_truth)
SPE_truth = np.array(SPE_truth)

fig, ax = plt.subplots()
#ax.plot(Evis, resFit**2, "-", lw=2, color="crimson", label=r"$\sigma_E^2$")
#ax.plot(Evis, resConstFit**2, "--", lw=2, color="crimson", label=r"$\sigma_{const}^2$")

ax.plot(Evis,
        resSctFit**2,
        "-",
        lw=2,
        color="dimgray",
        label=r"$\sigma_{sct}^2$")
ax.plot(Evis,
Пример #9
0
from matplotlib import gridspec

A, kB, kC, p1, p2 = 1408.45, 6.29e-3, 0.991, 0.979, 6.13e-5

if __name__ == "__main__" :

    globalES = 3134.078/2.223
    Edep = np.arange(0.50, 8.10, 0.10)
    Edep1 = np.arange(0.50, 8.10, 0.50)

    # load simulation
    npeSim = []
    speSim = []
    for i in Edep:
        npeSim.append(el.getNPE(i))
        speSim.append(el.getSPE(i))
    npeSim = np.array(npeSim)
    speSim = np.array(speSim)
    nonlSim = npeSim / Edep / globalES 
    resSim = speSim/npeSim

    # fitting results
    npeCalc = []
    npeCalc1 = []
    speCalc = []
    for i in Edep:
        sctpe = el.getQPE(i, kB, A)
        cerpe = kC * el.getCerNPE(i)
        npeCalc.append((sctpe+cerpe))
        speCalc.append(np.sqrt(p1*(sctpe+cerpe) + p2*(sctpe+cerpe)**2))
    for i in Edep1: