def filter_subsample_timepoints(experiment_dir, interval=3):
    '''
        interval - subsampling interval in hours
    '''
    e_metadata = load_data.read_metadata(experiment_dir)
    timestamps = numpy.array(e_metadata['timestamps'])
    timepoints = e_metadata['timepoints']
    expt_start = timestamps[0]
    expt_end = timestamps[-1]

    step = interval * 3600  #sec
    i = 1
    timepoints_to_load = []
    while expt_start + step * i < expt_end:
        timepoints_to_load.append(
            timepoints[abs(timestamps - (expt_start + step * i)).argmin()])
        i += 1

    def filter(position_name, position_annotations, timepoint_annotations):
        if position_annotations['exclude']:
            return False
        return [
            timepoint in timepoints_to_load
            for timepoint in timepoint_annotations
        ]

    return filter
def reset_positions_with_offset(experiment_dir, offset):
    ''' Modify position coordinates based on a fixed x-y offset
    
    Parameters:
        experiment_dir - str/pathlib.Path to experiment root
        offset - list giving the x-y offset
    '''

    experiment_dir = pathlib.Path(experiment_dir)
    print(f'Modifying positions for {experiment_dir.name}')
    metadata = load_data.read_metadata(experiment_dir)
    new_metadata = metadata.copy()

    if len(offset) == 2:
        offset.extend([0])

    try:
        time_label = time.strftime('%Y%m%d-%H%M-%S')

        for position in metadata['positions']:
            position_coords = metadata['positions'][position]
            new_metadata['positions'][position] = [
                position_coords[0] + offset[0], position_coords[1] + offset[1],
                position_coords[2] + offset[2]
            ]

        with (experiment_dir /
              f'experiment_metadata_beforechangingpositions_{time_label}.json'
              ).open('w') as mdata_file:
            datafile.json_encode_legible_to_file(metadata, mdata_file)

        load_data.write_metadata(new_metadata, experiment_dir)
    except KeyboardInterrupt:
        pass
def make_multipass_measurements(experiment_root, annotations, adult_only=True):
    experiment_metadata = load_data.read_metadata(experiment_root)
    microns_per_pixel = 1.3 * 5 / (experiment_metadata['objective'] *
                                   experiment_metadata['optocoupler'])
    measures = [MultipassPoseMeasurements(microns_per_pixel=microns_per_pixel)]
    measurement_name = 'multipass_measures'

    if adult_only:
        annotations = load_data.filter_annotations(
            annotations, elegant_filters.filter_by_stage('adult')).copy()

    process_data.measure_worms(experiment_root, annotations, measures,
                               measurement_name)
def reset_positions_manual(scope,
                           experiment_dir,
                           *annotation_filters,
                           revert_z=False):
    '''Reset positions manually for an experiment (i.e. with a separate ris_widget window open)
    
    Parameters:
        scope - ScopeClient object as defined by scope.scope_client
        experiment_dir - str/pathlib.Path to experiment
        annotation_filters - Optional variable filters to use to isolate specific positions of interest

    Call with annotation filters like so:
    reset_position.reset_positions(scope, experiment_dir, elegant_filters.filter_excluded, elegant_filters.filter_live_animals)
    '''

    experiment_dir = pathlib.Path(experiment_dir)
    print(f'Traversing {experiment_dir.name}')
    metadata = load_data.read_metadata(experiment_dir)
    if annotation_filters:
        experiment_annotations = load_data.read_annotations(experiment_dir)
        for filter in annotation_filters:
            experiment_annotations = load_data.filter_annotations(
                experiment_annotations, filter)
        positions = experiment_annotations.keys()
    else:
        positions = metadata['positions'].keys()

    new_positions = poll_positions(scope,
                                   metadata,
                                   positions,
                                   revert_z=revert_z)

    if new_positions:
        try:
            input(f'\nPress any key to save positions; ctrl-c to abort')
            time_label = time.strftime('%Y%m%d-%H%M-%S')

            with (experiment_dir /
                  f'experiment_metadata_beforechangingpositions_{time_label}.json'
                  ).open('w') as mdata_file:
                datafile.json_encode_legible_to_file(metadata, mdata_file)

            metadata['positions'].update(new_positions)
            load_data.write_metadata(metadata, experiment_dir)
        except KeyboardInterrupt:
            pass
    else:
        print('No positions found to reset')
Пример #5
0
def _check_metadata_for_timepoints(experiment_root):
    pm_files = list(experiment_root.glob('*/position_metadata.json'))
    with pm_files[0].open('r') as pm_fp:
        position_metadata = json.load(pm_fp)
    if 'timepoint' not in position_metadata[0]:
        experiment_metadata = load_data.read_metadata(experiment_root)
        for pm_file in pm_files:
            position_root = pm_file.parent
            if not (position_root /
                    'position_metadata_original.json').exists():
                shutil.copyfile(
                    str(pm_file),
                    str(position_root / 'position_metadata_original.json'))
            with pm_file.open('r') as pm_fp:
                position_metadata = json.load(pm_fp)
            for metadata_entry, timepoint in zip(
                    position_metadata, experiment_metadata['timepoint']):
                # Was there a bug with the purging code that breaks this?
                metadata_entry['timepoint'] = timepoint
            with pm_file.open('w') as pm_fp:
                json.dump(position_metadata, pm_fp)
def make_mask_measurements(experiment_root, annotations=None, adult_only=True):
    #process_data.annotate(experiment_root, annotators=[annotate_timepoints]) # Why?

    experiment_metadata = load_data.read_metadata(experiment_root)
    microns_per_pixel = 1.3 * 5 / (experiment_metadata['objective'] *
                                   experiment_metadata['optocoupler'])
    measures = [MaskPoseMeasurements(microns_per_pixel=microns_per_pixel)]
    measurement_name = 'mask_measures'

    if annotations is None:
        annotations = load_data.read_annotations(experiment_root)
        annotations = load_data.filter_annotations(annotations,
                                                   filter_excluded)

    annotations = load_data.filter_annotations(
        annotations, elegant_filters.filter_living_timepoints)
    if adult_only:
        annotations = load_data.filter_annotations(
            annotations, elegant_filters.filter_by_stage('adult'))

    process_data.measure_worms(experiment_root, annotations, measures,
                               measurement_name)
Пример #7
0
    return experiment_images

if __name__ == "__main__":
    expt_dir = pathlib.Path(sys.argv[1])

    show_poses = True

    try:
        rw
    except NameError:
        rw = ris_widget.RisWidget()

    if hasattr(rw, 'annotator'):
        rw.annotator.close()
        del(rw.annotator)

    # measurement_pipeline.propagate_stages(expt_dir)

    experiment_images = load_masks(expt_dir)

    annotation_fields = []
    annotation_fields.append(stage_field.StageField())

    if show_poses:
        metadata = load_data.read_metadata(expt_dir)
        pa = pose_annotation.PoseAnnotation.from_experiment_metadata(metadata, rw)
        annotation_fields.append(pa)

    ea = experiment_annotator.ExperimentAnnotator(rw, expt_dir.parts[-1],
            experiment_images, annotation_fields)
def process_experiment_with_filter(experiment_root,
                                   model,
                                   image_filter,
                                   mask_root=None,
                                   overwrite_existing=False,
                                   channels='bf',
                                   make_masks=True,
                                   do_annotations=True):
    '''
         image_filter - filter for scan_experiment_dir
    '''

    if mask_root is None:
        mask_root = pathlib.Path(experiment_root) / 'derived_data' / 'mask'

    # Temporary hacks until migration to new elegant complete (while zpl-9000 no longer updates annotations automatically)
    process_data.update_annotations(experiment_root)
    elegant_hacks.propagate_stages(experiment_root)

    start_t = time.time()
    positions = load_data.scan_experiment_dir(experiment_root,
                                              timepoint_filter=image_filter,
                                              channels=channels)
    scan_t = time.time()
    print(f'scanning done after {(scan_t-start_t)} s')

    if make_masks:
        process = segment_images.segment_positions(positions,
                                                   model,
                                                   mask_root,
                                                   use_gpu=True,
                                                   overwrite_existing=False)
        if process.stderr:
            print(f'Errors during segmentation: {process.stderr}'
                  )  #raise Exception)
            #raise Exception()
        segment_t = time.time()
        print(f'segmenting done after {(segment_t-scan_t)} s')
        with (mask_root / 'notes.txt').open('a+') as notes_file:
            notes_file.write(
                f'{datetime.datetime.today().strftime("%Y-%m-%dt%H%M")} These masks were segmented with model {model}\n'
            )
    else:
        print(f'No segmenting performed')

    if do_annotations:
        annotations = load_data.read_annotations(experiment_root)
        metadata = load_data.read_metadata(experiment_root)
        age_factor = metadata.get('age_factor', 1)
        width_estimator = worm_widths.WidthEstimator.from_experiment_metadata(
            metadata, age_factor)
        segment_images.annotate_poses_from_masks(positions, mask_root,
                                                 annotations,
                                                 overwrite_existing,
                                                 width_estimator)
        load_data.write_annotations(experiment_root, annotations)

        annotation_t = time.time()
        print(
            f'annotation done after {(annotation_t - segment_t)} s')  # ~3.5 hr
    else:
        print('No annotations done')