def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4): super().__init__() self.target_entropy = np.log(action_dim) self.alpha_log = torch.tensor( (-np.log(action_dim) * np.e, ), dtype=torch.float32, requires_grad=True, device=self.device) # trainable parameter self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target = deepcopy(self.act) self.cri = CriticTwin( int(net_dim * 1.25), state_dim, action_dim, ).to(self.device) self.cri_target = deepcopy(self.cri) self.criterion = torch.nn.SmoothL1Loss() self.optimizer = torch.optim.Adam([{ 'params': self.act.parameters(), 'lr': learning_rate * 0.75 }, { 'params': self.cri.parameters(), 'lr': learning_rate * 1.25 }, { 'params': (self.alpha_log, ), 'lr': learning_rate }])
def init(self, net_dim, state_dim, action_dim, if_per=False): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.target_entropy *= np.log(action_dim) self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32, requires_grad=True, device=self.device) # trainable parameter self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate) self.cri = CriticTwin(int(net_dim * 1.25), state_dim, action_dim, self.if_use_dn).to(self.device) self.cri_target = deepcopy(self.cri) self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), self.learning_rate) self.act = ActorSAC(net_dim, state_dim, action_dim, self.if_use_dn).to(self.device) self.act_optimizer = torch.optim.Adam(self.act.parameters(), self.learning_rate) self.criterion = torch.nn.SmoothL1Loss(reduction='none' if if_per else 'mean') if if_per: self.get_obj_critic = self.get_obj_critic_per else: self.get_obj_critic = self.get_obj_critic_raw
class AgentModSAC(AgentSAC): # Modified SAC using reliable_lambda and TTUR (Two Time-scale Update Rule) def __init__(self): super().__init__() self.if_use_dn = True self.obj_c = (-np.log(0.5)) ** 0.5 # for reliable_lambda def init(self, net_dim, state_dim, action_dim, if_per=False): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.target_entropy *= np.log(action_dim) self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32, requires_grad=True, device=self.device) # trainable parameter self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate) self.cri = CriticTwin(int(net_dim * 1.25), state_dim, action_dim, self.if_use_dn).to(self.device) self.cri_target = deepcopy(self.cri) self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), self.learning_rate) self.act = ActorSAC(net_dim, state_dim, action_dim, self.if_use_dn).to(self.device) self.act_optimizer = torch.optim.Adam(self.act.parameters(), self.learning_rate) self.criterion = torch.nn.SmoothL1Loss(reduction='none' if if_per else 'mean') if if_per: self.get_obj_critic = self.get_obj_critic_per else: self.get_obj_critic = self.get_obj_critic_raw def update_net(self, buffer, target_step, batch_size, repeat_times) -> (float, float): buffer.update_now_len_before_sample() alpha = self.alpha_log.exp().detach() update_a = 0 for update_c in range(1, int(buffer.now_len / batch_size * repeat_times)): '''objective of critic (loss function of critic)''' obj_critic, state = self.get_obj_critic(buffer, batch_size, alpha) self.obj_c = 0.995 * self.obj_c + 0.0025 * obj_critic.item() # for reliable_lambda self.cri_optimizer.zero_grad() obj_critic.backward() self.cri_optimizer.step() self.soft_update(self.cri_target, self.cri, self.soft_update_tau) '''objective of alpha (temperature parameter automatic adjustment)''' action_pg, logprob = self.act.get_action_logprob(state) # policy gradient obj_alpha = (self.alpha_log * (logprob - self.target_entropy).detach()).mean() self.alpha_optimizer.zero_grad() obj_alpha.backward() self.alpha_optimizer.step() with torch.no_grad(): self.alpha_log[:] = self.alpha_log.clamp(-20, 2) alpha = self.alpha_log.exp().detach() '''objective of actor using reliable_lambda and TTUR (Two Time-scales Update Rule)''' reliable_lambda = np.exp(-self.obj_c ** 2) # for reliable_lambda if_update_a = (update_a / update_c) < (1 / (2 - reliable_lambda)) if if_update_a: # auto TTUR update_a += 1 # if reliable_lambda > 0.02: q_value_pg = torch.min(*self.cri_target.get_q1_q2(state, action_pg)) obj_actor = -(q_value_pg + logprob * alpha.detach()).mean() * reliable_lambda self.act_optimizer.zero_grad() obj_actor.backward() self.act_optimizer.step() return alpha.item(), self.obj_c
class AgentSAC(AgentBase): def __init__(self): super().__init__() self.target_entropy = None self.alpha_log = None self.alpha_optimizer = None self.target_entropy = 1.0 # * np.log(action_dim) def init(self, net_dim, state_dim, action_dim, if_per=False): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.target_entropy *= np.log(action_dim) self.alpha_log = torch.tensor((-np.log(action_dim) * np.e,), dtype=torch.float32, requires_grad=True, device=self.device) # trainable parameter self.alpha_optimizer = torch.optim.Adam((self.alpha_log,), self.learning_rate) self.cri = CriticTwin(net_dim, state_dim, action_dim).to(self.device) self.cri_target = deepcopy(self.cri) self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), lr=self.learning_rate) self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_optimizer = torch.optim.Adam(self.act.parameters(), lr=self.learning_rate) self.criterion = torch.nn.SmoothL1Loss(reduction='none' if if_per else 'mean') if if_per: self.get_obj_critic = self.get_obj_critic_per else: self.get_obj_critic = self.get_obj_critic_raw def select_action(self, state) -> np.ndarray: states = torch.as_tensor((state,), dtype=torch.float32, device=self.device).detach_() action = self.act.get_action(states)[0] return action.cpu().numpy() def update_net(self, buffer, target_step, batch_size, repeat_times) -> (float, float): buffer.update_now_len_before_sample() alpha = self.alpha_log.exp().detach() obj_critic = None for _ in range(int(target_step * repeat_times)): '''objective of critic''' obj_critic, state = self.get_obj_critic(buffer, batch_size, alpha) self.cri_optimizer.zero_grad() obj_critic.backward() self.cri_optimizer.step() self.soft_update(self.cri_target, self.cri, self.soft_update_tau) '''objective of alpha (temperature parameter automatic adjustment)''' action_pg, logprob = self.act.get_action_logprob(state) # policy gradient obj_alpha = (self.alpha_log * (logprob - self.target_entropy).detach()).mean() self.alpha_optimizer.zero_grad() obj_alpha.backward() self.alpha_optimizer.step() '''objective of actor''' alpha = self.alpha_log.exp().detach() obj_actor = -(torch.min(*self.cri_target.get_q1_q2(state, action_pg)) + logprob * alpha).mean() self.act_optimizer.zero_grad() obj_actor.backward() self.act_optimizer.step() return alpha.item(), obj_critic.item() def get_obj_critic_raw(self, buffer, batch_size, alpha): with torch.no_grad(): reward, mask, action, state, next_s = buffer.sample_batch(batch_size) next_a, next_logprob = self.act.get_action_logprob(next_s) next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a)) q_label = reward + mask * (next_q + next_logprob * alpha) q1, q2 = self.cri.get_q1_q2(state, action) # twin critics obj_critic = self.criterion(q1, q_label) + self.criterion(q2, q_label) return obj_critic, state def get_obj_critic_per(self, buffer, batch_size, alpha): with torch.no_grad(): reward, mask, action, state, next_s, is_weights = buffer.sample_batch(batch_size) next_a, next_logprob = self.act.get_action_logprob(next_s) next_q = torch.min(*self.cri_target.get_q1_q2(next_s, next_a)) q_label = reward + mask * (next_q + next_logprob * alpha) q1, q2 = self.cri.get_q1_q2(state, action) # twin critics obj_critic = ((self.criterion(q1, q_label) + self.criterion(q2, q_label)) * is_weights).mean() td_error = (q_label - torch.min(q1, q1).detach()).abs() buffer.td_error_update(td_error) return obj_critic, state
class AgentSAC(AgentBase): def __init__(self, net_dim, state_dim, action_dim, learning_rate=1e-4): super().__init__() self.target_entropy = np.log(action_dim) self.alpha_log = torch.tensor( (-np.log(action_dim) * np.e, ), dtype=torch.float32, requires_grad=True, device=self.device) # trainable parameter self.act = ActorSAC(net_dim, state_dim, action_dim).to(self.device) self.act_target = deepcopy(self.act) self.cri = CriticTwin( int(net_dim * 1.25), state_dim, action_dim, ).to(self.device) self.cri_target = deepcopy(self.cri) self.criterion = torch.nn.SmoothL1Loss() self.optimizer = torch.optim.Adam([{ 'params': self.act.parameters(), 'lr': learning_rate * 0.75 }, { 'params': self.cri.parameters(), 'lr': learning_rate * 1.25 }, { 'params': (self.alpha_log, ), 'lr': learning_rate }]) def select_actions(self, states): # states = (state, ...) states = torch.as_tensor(states, dtype=torch.float32, device=self.device) actions = self.act.get_action(states) return actions.detach().cpu().numpy() def update_policy(self, buffer, max_step, batch_size, repeat_times): buffer.update__now_len__before_sample() alpha = self.alpha_log.exp().detach() obj_actor = obj_critic = None for _ in range(int(max_step * repeat_times)): with torch.no_grad(): reward, mask, action, state, next_s = buffer.random_sample( batch_size) next_a, next_log_prob = self.act_target.get__action__log_prob( next_s) next_q = torch.min(*self.cri_target.get__q1_q2(next_s, next_a)) q_label = reward + mask * (next_q + next_log_prob * alpha) q1, q2 = self.cri.get__q1_q2(state, action) obj_critic = self.criterion(q1, q_label) + self.criterion( q2, q_label) action_pg, log_prob = self.act.get__action__log_prob( state) # policy gradient obj_alpha = (self.alpha_log * (log_prob - self.target_entropy).detach()).mean() alpha = self.alpha_log.exp().detach() with torch.no_grad(): self.alpha_log[:] = self.alpha_log.clamp(-16, 2) obj_actor = -( torch.min(*self.cri_target.get__q1_q2(state, action_pg)) + log_prob * alpha).mean() obj_united = obj_critic + obj_alpha + obj_actor self.optimizer.zero_grad() obj_united.backward() self.optimizer.step() soft_target_update(self.cri_target, self.cri) soft_target_update(self.act_target, self.act) # return obj_actor.item(), obj_critic.item() return alpha.item(), obj_critic.item()