def test_apply_rowwise(self): A = elem.DistMatrix_d_VR_STAR() elem.Uniform(A, 100, self.n) S = sketch.FJLT(self.n, self.sn) SA = np.zeros((100, self.sn), order='F') S.apply(A, SA, "rowwise")
def test_apply_colwise(self): A = elem.DistMatrix_d_VR_STAR() elem.Uniform(A, self.n, 100) S = sketch.FJLT(self.n, self.sn) SA = np.zeros((self.sn, 100), order='F') S.apply(A, SA, "columnwise")
def test_apply_colwise(self): A = elem.DistMatrix_d_VR_STAR() #FIXME: Christos, use your matrix problem factory here elem.Uniform(A, _M, _N) #FIXME: A.Matrix will not work in parallel self.sv = np.linalg.svd(A.Matrix, full_matrices=1, compute_uv=0) for sketch in self.sketches: results = test_helper(A, _M, _N, _R, sketch, [self.svd_bound], MPI) self.check_result(results, str(sketch))
def _usage_tests(usps_path='./datasets/usps.t'): ''' Various simple example scenaria for showing the usage of the IO facilities ''' ############################################################ # libsvm ############################################################ fpath = usps_path # read features matrix and labels vector try: store = libsvm(fpath) except ImportError: print 'Please provide the path to usps.t as an argument' import sys; sys.exit() features_matrix, labels_matrix = store.read() matrix_info = features_matrix.shape, features_matrix.nnz, labels_matrix.shape # stream features matrix and labels vector store = libsvm(fpath) for features_matrix, labels_matrix in store.stream(num_features=400, block_size=100): matrix_info = features_matrix.shape, features_matrix.nnz, labels_matrix.shape print 'libsvm OK' ############################################################ # mtx ############################################################ features_fpath = '/tmp/test_features.mtx' labels_fpath = '/tmp/test_labels.mtx' # write features and labels store = mtx(features_fpath) store.write(features_matrix) store = mtx(labels_fpath) store.write(labels_matrix) # read back features as 'scipy-sparse' and 'combblas-sparse' store = mtx(features_fpath) A = store.read('scipy-sparse') store = mtx(features_fpath) B = store.read('combblas-sparse') print 'mtx OK' ############################################################ # hdf5 ############################################################ fpath = '/tmp/test_matrix.h5' # write a random 'numpy-dense' to HDF5 file store = hdf5(fpath) A = numpy.random.random((20, 65)) store.write(A) # read HDF5 file as: # - 'numpy-dense' # - 'elemental-dense' (default 'MC_MR' distribution) # - 'elemental-dense' ('VC_STAR' distribution) B = store.read('numpy-dense') C = store.read('elemental-dense') D = store.read('elemental-dense', distribution='VC_STAR') print 'hdf OK' ############################################################ # txt ############################################################ fpath = '/tmp/test_matrix.txt' # write a uniform random 'elemental-dense', 'MC_MR' distribution A = elem.DistMatrix_d() elem.Uniform(A, 10, 30) store = txt(fpath) store.write(A) # read the matrix back as 'numpy-dense' store = txt(fpath) A = store.read('numpy-dense') print 'txt OK'
import elem from skylark import sketch, elemhelper from mpi4py import MPI import numpy as np import time # Configuration m = 20000 n = 300 t = 1000 #sketches = { "JLT" : sketch.JLT, "FJLT" : sketch.FJLT, "CWT" : sketch.CWT } sketches = {"JLT": sketch.JLT, "CWT": sketch.CWT} # Set up the random regression problem. A = elem.DistMatrix_d_VR_STAR() elem.Uniform(A, m, n) b = elem.DistMatrix_d_VR_STAR() elem.Uniform(b, m, 1) # Solve using Elemental # Elemental currently does not support LS on VR,STAR. # So we copy. A1 = elem.DistMatrix_d() elem.Copy(A, A1) b1 = elem.DistMatrix_d() elem.Copy(b, b1) x = elem.DistMatrix_d(n, 1) t0 = time.time() elem.LeastSquares(elem.NORMAL, A1, b1, x) telp = time.time() - t0