Пример #1
0
def test_lp_to_simple_rdd_categorical(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[0, 0, 1.0], [0, 1.0, 0]])
    lp_rdd = rdd_utils.to_labeled_point(spark_context, features, labels, True)

    rdd = rdd_utils.lp_to_simple_rdd(lp_rdd, categorical=True, nb_classes=3)
    assert rdd.first()[0].shape == (10, )
    assert rdd.first()[1].shape == (3, )
Пример #2
0
def test_lp_to_simple_rdd_not_categorical(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[2.0], [1.0]]).reshape((2, ))
    lp_rdd = rdd_utils.to_labeled_point(spark_context, features, labels, False)

    rdd = rdd_utils.lp_to_simple_rdd(lp_rdd, categorical=False, nb_classes=3)
    assert rdd.first()[0].shape == (10, )
    assert rdd.first()[1] == 2.0
Пример #3
0
def test_from_labeled_rdd(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[2.0], [1.0]]).reshape((2, ))
    lp_rdd = rdd_utils.to_labeled_point(spark_context, features, labels, False)

    x, y = rdd_utils.from_labeled_point(lp_rdd, False, None)
    assert x.shape == features.shape
    assert y.shape == labels.shape
Пример #4
0
def test_from_labeled_rdd_categorical(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[0, 0, 1.0], [0, 1.0, 0]])
    lp_rdd = rdd_utils.to_labeled_point(spark_context, features, labels, True)

    x, y = rdd_utils.from_labeled_point(lp_rdd, True, 3)
    assert x.shape == features.shape
    assert y.shape == labels.shape
Пример #5
0
def test_to_labeled_rdd_not_categorical(spark_context):
    features = np.ones((2, 10))
    labels = np.asarray([[2.0], [1.0]])
    lp_rdd = rdd_utils.to_labeled_point(spark_context, features, labels, False)
    assert lp_rdd.count() == 2
    first = lp_rdd.first()
    assert first.features.shape == (10, )
    assert first.label == 2.0
def test_mllib_model(spark_context):
    # Build RDD from numpy features and labels
    lp_rdd = to_labeled_point(spark_context, x_train, y_train, categorical=True)

    # Initialize SparkModel from Keras model and Spark context
    spark_model = SparkMLlibModel(model=model, frequency='epoch', mode='synchronous')

    # Train Spark model
    spark_model.fit(lp_rdd, epochs=5, batch_size=32, verbose=0,
                    validation_split=0.1, categorical=True, nb_classes=nb_classes)

    # Evaluate Spark model by evaluating the underlying model
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    print('Test accuracy:', score[1])
Пример #7
0
def test_mllib_model(spark_context, classification_model, mnist_data):
    rms = RMSprop()
    classification_model.compile(rms, 'categorical_crossentropy', ['acc'])
    x_train, y_train, x_test, y_test = mnist_data
    x_train = x_train[:1000]
    y_train = y_train[:1000]
    # Build RDD from numpy features and labels
    lp_rdd = to_labeled_point(spark_context, x_train,
                              y_train, categorical=True)

    # Initialize SparkModel from tensorflow.keras model and Spark context
    spark_model = SparkMLlibModel(
        model=classification_model, frequency='epoch', mode='synchronous')

    # Train Spark model
    spark_model.fit(lp_rdd, epochs=5, batch_size=32, verbose=0,
                    validation_split=0.1, categorical=True, nb_classes=nb_classes)

    # Evaluate Spark model by evaluating the underlying model
    score = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
    assert score
Пример #8
0
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

# Compile model
rms = RMSprop()
model.compile(rms, "categorical_crossentropy", ['acc'])

# Create Spark context
conf = SparkConf().setAppName('Mnist_Spark_MLP').setMaster('local[8]')
sc = SparkContext(conf=conf)

# Build RDD from numpy features and labels
lp_rdd = to_labeled_point(sc, x_train, y_train, categorical=True)

# Initialize SparkModel from tensorflow.keras model and Spark context
spark_model = SparkMLlibModel(model=model,
                              frequency='epoch',
                              mode='synchronous')

# Train Spark model
spark_model.fit(lp_rdd,
                epochs=5,
                batch_size=32,
                verbose=0,
                validation_split=0.1,
                categorical=True,
                nb_classes=nb_classes)
Пример #9
0
model.add(Dropout(0.2))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=["accuracy"])

# Create Spark context
conf = SparkConf().setAppName('Mnist_Spark_MLP').setMaster('local[8]')
#sc = SparkContext(conf=conf)

# Build RDD from numpy features and labels
lp_rdd = to_labeled_point(sc, x_train, y_train, categorical=True)
rdd = lp_to_simple_rdd(lp_rdd, True, nb_classes)

# Initialize SparkModel from Keras model and Spark context
adagrad = elephas_optimizers.Adagrad()

spark_model = SparkMLlibModel(sc, model, optimizer=adagrad, frequency='batch', mode='asynchronous', num_workers=4)

# Train Spark model
spark_model.train(lp_rdd, nb_epoch=nb_epoch, batch_size=batch_size, verbose=0,
                  validation_split=0.1, categorical=True, nb_classes=nb_classes)

# Evaluate Spark model by evaluating the underlying model
loss, acc = spark_model.master_network.evaluate(x_test, y_test, verbose=2)
print('Test accuracy:', acc)
Пример #10
0
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

# Compile model
rms = RMSprop()
model.compile(loss='categorical_crossentropy', optimizer=rms)

# Create Spark context
conf = SparkConf().setAppName('Mnist_Spark_MLP').setMaster('local[8]')
sc = SparkContext(conf=conf)

# Build RDD from numpy features and labels
lp_rdd = to_labeled_point(sc, X_train, Y_train, categorical=True)
print(lp_rdd.first())
rdd = lp_to_simple_rdd(lp_rdd, True, nb_classes)
rdd = rdd.repartition(4)
rdd.first()

# Initialize SparkModel from Keras model and Spark context
adadelta = elephas_optimizers.Adadelta()
spark_model = SparkMLlibModel(sc,model, optimizer=adadelta, frequency='batch', mode='asynchronous', num_workers=2)

# Train Spark model
spark_model.train(lp_rdd, nb_epoch=20, batch_size=32, verbose=0, validation_split=0.1, categorical=True, nb_classes=nb_classes)

# Evaluate Spark model by evaluating the underlying model
score = spark_model.get_network().evaluate(X_test, Y_test, show_accuracy=True, verbose=2)
print('Test accuracy:', score[1])
Пример #11
0
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))

# Compile model
rms = RMSprop()
model.compile(loss='categorical_crossentropy', optimizer=rms)

# Create Spark context
conf = SparkConf().setAppName('Mnist_Spark_MLP').setMaster('local[8]')
sc = SparkContext(conf=conf)

# Build RDD from numpy features and labels
lp_rdd = to_labeled_point(sc, X_train, Y_train, categorical=True)
print(lp_rdd.first())
rdd = lp_to_simple_rdd(lp_rdd, True, nb_classes)
rdd = rdd.repartition(4)
rdd.first()

# Initialize SparkModel from Keras model and Spark context
adadelta = elephas_optimizers.Adadelta()
spark_model = SparkMLlibModel(sc,
                              model,
                              optimizer=adadelta,
                              frequency='batch',
                              mode='asynchronous',
                              num_workers=2)

# Train Spark model