def ema_test(self): """ema_test: this test is checks the calculation of exponential moving average""" sourcelist = [ 0.9676834571, 0.9517338109, 0.9469666224, 0.9455741929, 0.937271954, 0.9756308369, 0.963667954, 0.9783003172, 0.9791772432, 0.9630688213, 0.9636879293, 0.9581131469, 0.9749188851, 0.96132287, 0.9594692316, 0.9517417142, 0.9580682981, 0.9694806605, 0.9705071034, 0.9741733322, 0.9656285119, 0.9797829703, 0.9476657225, 0.9505700439, 0.9769535092, 0.9628920433, 0.9886532632, 0.9749905082, 0.9622008273, 0.9588126694, 0.9585201885, 0.9656285119, 0.9635884074, 0.9637201077, 0.9486464305, 0.9448569633, 0.9548531757, 0.9413523349, 0.9437067169, 0.9295829852, 0.9443785543, 0.9266972306, 0.9272177018, 0.9396456813, 0.948808991, 0.9573977701, 0.970075925, 0.9793470801, 0.9840866322, 0.9765331821, 0.9656885071, 0.9629277499, 0.9614462269, 0.9738112064, 0.949794186, 0.9964832677, 0.9958061173, 0.9737453088, 0.9641612591, 0.9680686611, 0.9796823214, 0.9715538306, 0.9917106859, 0.961369319, 0.960533384, 0.9630009426, 0.9597456627, 0.9426550241, 0.9571523382, 0.9441424433, 0.9533811307, 0.9547935049, 0.9595538268, 0.9522523389, 0.9563979183, 0.9743059924, 0.963151262, 0.9664897915, 0.9625850612, 0.9878803841, 0.973709362, 0.9593169424, 0.9501199574, 0.9492373943, 0.9438450032, 0.9455317748, 0.967039832, 0.9616603865, 0.9824073673, 0.9699467778, 0.9750983573, 0.9927066538, 0.9729307196, 0.9851261483, 0.9534832401, 0.9562380523, 0.9606531787, 0.967532279, 0.9584946534, 0.9740792079 ] target = 0.60700186991 result = emafit.ema(sourcelist) self.assertAlmostEqual(result, target)
def ema_test(self): sourcelist = [0.9676834571,0.9517338109,0.9469666224,0.9455741929,0.937271954,0.9756308369,0.963667954,0.9783003172, 0.9791772432,0.9630688213,0.9636879293, 0.9581131469,0.9749188851,0.96132287,0.9594692316,0.9517417142, 0.9580682981,0.9694806605,0.9705071034,0.9741733322,0.9656285119,0.9797829703,0.9476657225,0.9505700439, 0.9769535092,0.9628920433,0.9886532632,0.9749905082,0.9622008273,0.9588126694,0.9585201885,0.9656285119, 0.9635884074,0.9637201077,0.9486464305,0.9448569633,0.9548531757,0.9413523349,0.9437067169,0.9295829852, 0.9443785543,0.9266972306,0.9272177018,0.9396456813,0.948808991,0.9573977701,0.970075925,0.9793470801, 0.9840866322,0.9765331821,0.9656885071,0.9629277499,0.9614462269,0.9738112064,0.949794186,0.9964832677, 0.9958061173,0.9737453088,0.9641612591,0.9680686611,0.9796823214,0.9715538306,0.9917106859,0.961369319, 0.960533384,0.9630009426,0.9597456627,0.9426550241,0.9571523382,0.9441424433,0.9533811307,0.9547935049, 0.9595538268,0.9522523389,0.9563979183,0.9743059924,0.963151262,0.9664897915,0.9625850612,0.9878803841,0.973709362, 0.9593169424,0.9501199574,0.9492373943,0.9438450032,0.9455317748,0.967039832,0.9616603865,0.9824073673, 0.9699467778,0.9750983573,0.9927066538,0.9729307196,0.9851261483,0.9534832401,0.9562380523,0.9606531787, 0.967532279,0.9584946534,0.9740792079] target = 0.60700186991 result = emafit.ema(sourcelist) self.assertAlmostEqual(result,target)
def calc_features(fullarray, micannot, samp_rate): #vect_c not used pre_win = [0, 100] #pre-window 1s impact_max = [50, 150] #1s imp_win = [50, 650] # impact window 6s post_win = [300, 1200] #9 s, based on the paper it should be 250-1200 datAr = [] #for vector magnitude datXa = [] #for X values datYa = [] #for Y values datZa = [] #for Z values datXg = [] datYg = [] datZg = [] for tempdata in fullarray: datAr.append(float(tempdata[6])) datXa.append(float(tempdata[0])) datYa.append(float(tempdata[1])) datZa.append(float(tempdata[2])) datXg.append(float(tempdata[3])) datYg.append(float(tempdata[4])) datZg.append(float(tempdata[5])) #if micannot == 2: # print "fall" #else: # print "non-fall" #plt.plot(datAr) #plt.show() #****************************************************************************************************************************** #minimum pre impact min_pre = min(datAr[pre_win[0]:pre_win[1]]) #minimum value impact #min_imp = min(datAr[imp_win[0]:imp_win[1]]) #minimum post imp #min_post = min(datAr[post_win[0]:post_win[1]]) #****************************************************************************************************************************** #maximum value pre-impact #max_pre = max(datAr[pre_win[0]:pre_win[1]]) #maximum value impact max_imp = max(datAr[impact_max[0]:impact_max[1]]) #maximum value post #max_post = max(datAr[post_win[0]:post_win[1]]) #****************************************************************************************************************************** #mean for pre-impact event meanList1 = datAr[pre_win[0]:pre_win[1]] meanVal1 = numpy.mean(meanList1) #****************************************************************************************************************************** #mean for impact meanList2 = datAr[imp_win[0]:imp_win[1]] meanVal2 = numpy.mean(meanList2) #****************************************************************************************************************************** #mean for post-impact meanList3 = datAr[post_win[0]:post_win[1]] meanVal3 = numpy.mean(meanList3) #****************************************************************************************************************************** #Root mean square for pre-impact rmsList1 = datAr[pre_win[0]:pre_win[1]] rms1 = sqrt(mean(numpy.array(rmsList1)**2)) #Root mean square for impact rmsList2 = datAr[imp_win[0]:imp_win[1]] rms2 = sqrt(mean(numpy.array(rmsList2)**2)) #Root mean square for post-impact rmsList3 = datAr[post_win[0]:post_win[1]] rms3 = sqrt(mean(numpy.array(rmsList3)**2)) #****************************************************************************************************************************** #variance for pre-impact variance1 = numpy.var(datAr[pre_win[0]:pre_win[1]], ddof=1) #variance for impact variance2 = numpy.var(datAr[imp_win[0]:imp_win[1]], ddof=1) #variance for post-impact variance3 = numpy.var(datAr[post_win[0]:post_win[1]], ddof=1) #****************************************************************************************************************************** #velocity in pre-impact velo1 = integrator.integrate(datAr[pre_win[0]:pre_win[1]]) #velocity in impact velo2 = integrator.integrate(datAr[imp_win[0]:imp_win[1]]) #velocity in post-impact velo3 = integrator.integrate(datAr[post_win[0]:post_win[1]]) #****************************************************************************************************************************** #energy in pre-impact win1x = datXa[pre_win[0]:pre_win[1]] win1y = datYa[pre_win[0]:pre_win[1]] win1z = datZa[pre_win[0]:pre_win[1]] energy1 = energyFeat.energyCalc(win1x, win1y, win1z) #energy in impact win2x = datXa[imp_win[0]:imp_win[1]] win2y = datYa[imp_win[0]:imp_win[1]] win2z = datZa[imp_win[0]:imp_win[1]] energy2 = energyFeat.energyCalc(win2x, win2y, win2z) #energy in post-impact win3x = datXa[post_win[0]:post_win[1]] win3y = datYa[post_win[0]:post_win[1]] win3z = datZa[post_win[0]:post_win[1]] energy3 = energyFeat.energyCalc(win3x, win3y, win3z) #****************************************************************************************************************************** #signal magnitude are in pre-impact sma1 = smaFeat.smafeat(datXa[pre_win[0]:pre_win[1]], datYa[pre_win[0]:pre_win[1]], datZa[pre_win[0]:pre_win[1]]) #signal magnitude are in impact sma2 = smaFeat.smafeat(datXa[imp_win[0]:imp_win[1]], datYa[imp_win[0]:imp_win[1]], datZa[imp_win[0]:imp_win[1]]) #signal magnitude are in pre-impact sma3 = smaFeat.smafeat(datXa[post_win[0]:post_win[1]], datYa[post_win[0]:post_win[1]], datZa[post_win[0]:post_win[1]]) #****************************************************************************************************************************** #exponential moving average in pre-impact ewma1 = emafit.ema(datAr[pre_win[0]:pre_win[1]]) #exponential moving average in impact ewma2 = emafit.ema(datAr[imp_win[0]:imp_win[1]]) #exponential moving average in post-impact ewma3 = emafit.ema(datAr[post_win[0]:post_win[1]]) #****************************************************************************************************************************** datfeat = [ min_pre, max_imp, meanVal1, meanVal2, meanVal3, rms1, rms2, rms3, variance1, variance2, variance3, velo1, velo2, velo3, energy1, energy2, energy3, sma1, sma2, sma3, ewma1, ewma2, ewma3, micannot ] return datfeat
def featurescom (fullarray, micannot,act_state): samp_rate = source_var.sampling_rate() pre_win = [0, samp_rate] #pre-window imp_win = [(samp_rate/2)-1, int(6.5 * samp_rate)] # impact window post_win = [int((2.5 * samp_rate))-1, 12 * samp_rate] #post impact window max_win = [(samp_rate/2)-1, int(1.5 * samp_rate)] # window for search max value tilt_sample_impact = [(2*samp_rate)-1, 3*samp_rate] tilt_sample_post = [(3 * samp_rate) - 1, 12 * samp_rate] # window for tilt-angle datAr = [] #for vector magnitude datXa= [] #for X values datYa= [] #for Y values datZa= [] #for Z values datXg=[] datYg=[] datZg=[] for tempdata in fullarray: datAr.append(float(tempdata[6])) datXa.append(float(tempdata[0])) datYa.append(float(tempdata[1])) datZa.append(float(tempdata[2])) datXg.append(float(tempdata[3])) datYg.append(float(tempdata[4])) datZg.append(float(tempdata[5])) #****************************************************************************************************************************** #minimum value feature minVal = min(datAr[pre_win[0]:pre_win[1]]) #****************************************************************************************************************************** #maximum value feature maxVal = max(datAr[max_win[0]:max_win[1]]) #****************************************************************************************************************************** #mean for pre-impact event meanList1 = datAr[pre_win[0]:pre_win[1]] meanVal1 = numpy.mean(meanList1) #****************************************************************************************************************************** #mean for impact meanList2 = datAr[imp_win[0]:imp_win[1]] meanVal2 = numpy.mean(meanList2) #****************************************************************************************************************************** #mean for post-impact meanList3 = datAr[post_win[0]:post_win[1]] meanVal3 = numpy.mean(meanList3) #****************************************************************************************************************************** #Root mean square for pre-impact rmsList1 = datAr[pre_win[0]:pre_win[1]] rms1 = sqrt(mean(numpy.array(rmsList1)**2)) #Root mean square for impact rmsList2 = datAr[imp_win[0]:imp_win[1]] rms2 = sqrt(mean(numpy.array(rmsList2)**2)) #Root mean square for post-impact rmsList3 = datAr[post_win[0]:post_win[1]] rms3 = sqrt(mean(numpy.array(rmsList3)**2)) #****************************************************************************************************************************** #variance for pre-impact variance1 = numpy.var(datAr[pre_win[0]:pre_win[1]],ddof=1) #variance for impact variance2 = numpy.var(datAr[imp_win[0]:imp_win[1]],ddof=1) #variance for post-impact variance3 = numpy.var(datAr[post_win[0]:post_win[1]],ddof=1) #****************************************************************************************************************************** #velocity in pre-impact velo1 = integrator.integrate(datAr[pre_win[0]:pre_win[1]]) #velocity in impact velo2 = integrator.integrate(datAr[imp_win[0]:imp_win[1]]) #velocity in post-impact velo3 = integrator.integrate(datAr[post_win[0]:post_win[1]]) #****************************************************************************************************************************** #energy in pre-impact win1x = datXa[pre_win[0]:pre_win[1]] win1y = datYa[pre_win[0]:pre_win[1]] win1z = datZa[pre_win[0]:pre_win[1]] energy1 = energyFeat.energyCalc(win1x,win1y,win1z) #energy in impact win2x = datXa[imp_win[0]:imp_win[1]] win2y = datYa[imp_win[0]:imp_win[1]] win2z = datZa[imp_win[0]:imp_win[1]] energy2 = energyFeat.energyCalc(win2x,win2y,win2z) #energy in post-impact win3x = datXa[post_win[0]:post_win[1]] win3y = datYa[post_win[0]:post_win[1]] win3z = datZa[post_win[0]:post_win[1]] energy3 = energyFeat.energyCalc(win3x,win3y,win3z) #****************************************************************************************************************************** #signal magnitude are in pre-impact sma1 = smaFeat.smafeat(datXa[pre_win[0]:pre_win[1]],datYa[pre_win[0]:pre_win[1]],datZa[pre_win[0]:pre_win[1]]) #signal magnitude are in impact sma2 = smaFeat.smafeat(datXa[imp_win[0]:imp_win[1]],datYa[imp_win[0]:imp_win[1]],datZa[imp_win[0]:imp_win[1]]) #signal magnitude are in pre-impact sma3 = smaFeat.smafeat(datXa[post_win[0]:post_win[1]],datYa[post_win[0]:post_win[1]],datZa[post_win[0]:post_win[1]]) #****************************************************************************************************************************** #exponential moving average in pre-impact ewma1 = emafit.ema(datAr[pre_win[0]:pre_win[1]]) #exponential moving average in impact ewma2 = emafit.ema(datAr[imp_win[0]:imp_win[1]]) #exponential moving average in post-impact ewma3 = emafit.ema(datAr[post_win[0]:post_win[1]]) #****************************************************************************************************************************** #Tilt Angle in pre-impact all_angle_1 = mytilt.mytilt(datXa[pre_win[0]:pre_win[1]],datYa[pre_win[0]:pre_win[1]],datZa[pre_win[0]:pre_win[1]], datXg[pre_win[0]:pre_win[1]],datYg[pre_win[0]:pre_win[1]],datZg[pre_win[0]:pre_win[1]]) angle_y_1 = numpy.max(numpy.abs(numpy.array(all_angle_1[0]))) angle_z_1 = numpy.max(numpy.abs(numpy.array(all_angle_1[1]))) #Tilt Angle in impact all_angle_2 = mytilt.mytilt(datXa[tilt_sample_impact[0]:tilt_sample_impact[1]],datYa[tilt_sample_impact[0]:tilt_sample_impact[1]], datZa[tilt_sample_impact[0]:tilt_sample_impact[1]],datXg[tilt_sample_impact[0]:tilt_sample_impact[1]], datYg[tilt_sample_impact[0]:tilt_sample_impact[1]],datZg[tilt_sample_impact[0]:tilt_sample_impact[1]]) angle_y_2 = numpy.max(numpy.abs(numpy.array(all_angle_2[0]))) angle_z_2 = numpy.max(numpy.abs(numpy.array(all_angle_2[1]))) #Tilt Angle in post-impact all_angle_3 = mytilt.mytilt(datXa[tilt_sample_post[0]:tilt_sample_post[1]],datYa[tilt_sample_post[0]:tilt_sample_post[1]], datZa[tilt_sample_post[0]:tilt_sample_post[1]],datXg[tilt_sample_post[0]:tilt_sample_post[1]], datYg[tilt_sample_post[0]:tilt_sample_post[1]],datZg[tilt_sample_post[0]:tilt_sample_post[1]]) angle_y_3 = numpy.max(numpy.abs(numpy.array(all_angle_3[0]))) angle_z_3 = numpy.max(numpy.abs(numpy.array(all_angle_3[1]))) #****************************************************************************************************************************** annot = micannot #datfeat = [minVal, maxVal, meanVal1, meanVal2, meanVal3, rms1, rms2, rms3, variance1, variance2, variance3, velo1, # velo2, velo3, energy1, energy2, energy3, sma1, sma2, sma3, ewma1, ewma2, ewma3, act_state, annot] datfeat = [minVal, maxVal, meanVal1, meanVal2, meanVal3, rms1, rms2, rms3, variance1, variance2, variance3, velo1, velo2, velo3, energy1, energy2, energy3, sma1, sma2, sma3, ewma1, ewma2, ewma3, angle_y_1, angle_z_1, angle_y_2, angle_z_2,angle_y_3,angle_z_3,act_state, annot] return datfeat