Пример #1
0
    def __init__(self, vec_dim, dim, options={}):
        """
        Instantiate the Layer (which will later be used to connect tensors)

        Parameters
        ----------
        vec_dim : int (width of the vector generated by the vectorizer)

        dim : int (width of vectors in the rest of the network)
        """
        super(StackedBiLSTM, self).__init__()
        
        # Embedder (mostly to upscale the incoming character vectors)
        self.embedder     = Embedder(vec_dim, dim)
        
        # Left to right Stacked LSTM
        self.left2rightA  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors
        self.left2rightB  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors
        
        # Right to left Stacked LSTM
        self.right2leftA  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors
        self.right2leftB  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors

        # Output decision layer
        self.splitLayer  = SplitLayer(dim, options=options)      # Outputs a one-dimensional length-2 vector
        
        self.Lzeros      = pu.var_zeros(dim, ttype=options.get('ttype'))    # Zeros for initialization from left
        self.Lhzeros     = pu.var_zeros(dim, ttype=options.get('ttype'))    # Zeros for initialization (hidden layer)
        self.Rzeros      = pu.var_zeros(dim, ttype=options.get('ttype'))    # same, for the right
        self.Rhzeros     = pu.var_zeros(dim, ttype=options.get('ttype'))
        self.training    = False   # By default, but set to True during training with 'train()'
Пример #2
0
def calc_embeddings(docs: List[str], batch_size: int, root: str) -> np.ndarray:
    """Calculate embeddings (in batches).

    Args:
        docs: List of documents filenames.
        batch_size: Batch size.
        root: Root directory.

    Returns:
        Numpy array of (N, 768) of texts embeddings.

    """
    embedder = Embedder()
    all_embeddings = np.zeros((len(docs), 768), dtype=np.float32)

    iters = len(docs) // batch_size
    if len(docs) % batch_size > 0:
        iters += 1

    for i in trange(iters):
        batch = docs[i * batch_size:(i + 1) * batch_size]
        filenames = [os.path.join(root, doc) for doc in batch]
        texts = [get_text_reduced(x, maxlen=512) for x in filenames]
        embeddings = embedder.embed(texts)
        all_embeddings[i * batch_size:(i + 1) * batch_size] = embeddings
    return all_embeddings
Пример #3
0
def main():
    args = arg_parse()
    docs = [
        os.path.join(dir, f) for dir in os.listdir(args.root)
        for f in os.listdir(os.path.join(args.root, dir))
    ]
    docs = sorted(docs)

    index = Indexer(docs, args.index, args.root)
    embedder = Embedder()

    # L0
    q_pos, q_neg = query_expand(args.query)
    # Get all OR-ed tokens
    q_pos_expand = re.sub(r" ", " AND ", q_pos)
    hits = index.query_boolean(q_pos_expand.split())
    # Remove all NOT-ed tokens
    if q_neg:
        for token in q_neg.split():
            term = index.stemmer.stem(token)
            try:
                not_posting = index.tfidf(index.index[term])
            except KeyError:
                not_posting = []
            hits = not_and_postings(not_posting, hits)

    if not hits:
        print("nothing found")
        return

    hits = sorted(hits, key=lambda item: item[1], reverse=True)
    hits = hits[:args.l0_size]

    # L1
    doc_ids = [x[0] for x in hits]
    filenames = [os.path.join(args.root, docs[i]) for i in doc_ids]
    texts = [get_text_reduced(x, maxlen=512) for x in filenames]

    if args.batch_size >= args.l0_size:
        embeddings = embedder.embed(texts)
    else:
        embeddings = batch_embed(embedder, texts, args.batch_size)
    query_emb = embedder.embed([q_pos])[0]
    dist_cos = [cosine(query_emb, e) for e in embeddings]
    idx_cos = np.argsort(dist_cos)

    # Render
    q_red = query_reduce(args.query)
    resorted = [doc_ids[i] for i in idx_cos]
    for i, id in enumerate(resorted[:args.l1_size]):
        print("\n{}:".format(i))
        index.render_file(q_red.split(), docs[id])
        orig_pos = idx_cos[i]
        print("\tL0 rank = {}; tf-idf = {:.3f}; cos-sim = {:.3f}".format(
            orig_pos, hits[orig_pos][1], 1 - dist_cos[orig_pos]))
def build_model(config, src_field, tgt_field):
    embed_dim = config.embed_dim
    hidden_dim = config.hidden_dim
    num_layers = config.num_layers
    dropout_p = config.dropout_p
    attention_type = config.attention
    beam_width = config.beam_width

    model = Seq2Seq(
        LstmEncoder(Embedder(src_field, embed_dim, dropout_p), hidden_dim,
                    num_layers, dropout_p),
        LstmDecoder(Embedder(tgt_field, embed_dim, dropout_p), hidden_dim,
                    num_layers, dropout_p,
                    build_attention(hidden_dim, attention_type), beam_width),
    )
    return model
Пример #5
0
    def __init__(self, env, loss_fn, optim, gym=gym, preprocess_func=None, utility_func=None, embed=False, flatten=False, frameskip=1, batch_size=32, cuda=False, ale=False, init_skip=0, mid_skip=0, caution=0.0, render_skip=1):

        self.n_agents = 1

        if utility_func == None:
            raise Exception("Need utility function")
        if preprocess_func == None:
            raise Exception("Need preprocess function")
        if self.n_agents < 1:
            raise Exception("Need at least 1 agent.")
        if self.n_agents > 1:
            raise NotImplementedError

        super(Coach, self).__init__()
        print("Initializing Coach")

        self.ale = ale
        self.name = env
        self.gym = gym
        self.dones = [False for _ in range(self.n_agents)]
        self.length = 0
        self.memory = Memory(self.n_agents)
        self.episode = []
        self.embedder = Embedder()
        self.embedding = embed
        self.flatten = flatten
        self.best_episode = []
        self.p_obs = torch.zeros(1)
        self.values = []
        self.frameskip = frameskip
        self.loss_fn=loss_fn
        self.optim = optim
        self.preview = False
        self.single_step = False
        self.norm = True
        self.render = False
        self.debug_render = False
        self.caution = caution#0.95
        self.life = -1
        self.life = -1
        self.init_skip = init_skip#70
        self.render_frameskip = render_skip
        self.mid_skip = mid_skip#50
        self.steps = 0
        self.batch_size = batch_size
        self.preprocess_frame = preprocess_func
        self.update = utility_func
        self.cuda = cuda

        atexit.register(self.end)
        #create environments
        self.envs = [self.gym.make(self.name) for _ in range(self.n_agents)]
        self.env = 0

        self.actions = self.envs[0].action_space.n

        os.system("toilet {}".format(self.name))
Пример #6
0
def build_model(cfg, char_voca, word_voca=None, gazet=None, pos_voca=None):
    """Build Neural Network based Ner model (Embedder + Classifier)"""

    # Build Embedder
    embedder = Embedder(window=cfg.window,
                        char_voca=char_voca,
                        word_voca=word_voca,
                        jaso_dim=cfg.jaso_dim,
                        char_dim=cfg.char_dim,
                        word_dim=cfg.word_dim,
                        gazet=gazet,
                        gazet_embed=True,
                        pos_enc=True,
                        phoneme=True,
                        pos_voca_size=len(pos_voca),
                        pos_dim=cfg.pos_dim)

    print('Total Embedding_size: ', embedder.embed_dim)

    encoder_name, decoder_name = cfg.model_name.lower().split('-')

    # Build Encoder
    if encoder_name == 'fnn5':
        encoder = models.Fnn5(context_len=cfg.context_len,
                              in_dim=embedder.embed_dim,
                              hidden_dim=cfg.hidden_dim)
    elif encoder_name == 'cnn7':
        encoder = models.Cnn7(in_dim=embedder.embed_dim,
                              hidden_dim=cfg.hidden_dim)
    elif encoder_name == 'cnn8':
        encoder = models.Cnn8(context_len=cfg.context_len,
                              in_dim=embedder.embed_dim,
                              hidden_dim=cfg.hidden_dim)
    elif encoder_name in ['gru', 'lstm', 'sru']:
        encoder = models.RnnEncoder(context_len=cfg.context_len,
                                    in_dim=embedder.embed_dim,
                                    out_dim=cfg.hidden_dim,
                                    cell=encoder_name)
    else:
        raise ValueError('unknown model name: %s' % cfg.model_name)

    # Build Decoder
    if decoder_name.lower() == 'fc':
        decoder = models.FCDecoder(in_dim=encoder.out_dim,
                                   hidden_dim=cfg.hidden_dim,
                                   n_tags=cfg.n_tags)
    elif decoder_name in ['gru', 'lstm', 'sru']:
        decoder = models.RnnDecoder(in_dim=encoder.out_dim,
                                    hidden_dim=cfg.hidden_dim,
                                    n_tags=cfg.n_tags,
                                    num_layers=cfg.num_layers,
                                    cell=decoder_name)

    model = models.Ner(embedder, encoder, decoder)

    return model
Пример #7
0
 def __init__(self,
              trained_model_PATH,
              vocabulary='./XX/vocabulary.pkl',
              tag='./XX/tags.pkl',
              status='raw'):
     self.trained_model_PATH = trained_model_PATH
     self.vocabulary = vocabulary
     self.tag = tag
     self.model = None
     self.embedding = Embedder(vocabulary, tag)
     self.loadmodel()
Пример #8
0
def embed(stego, secret, chromosome):
    """Embed secret message into the host using the chromosome"""
    if len(chromosome) > 7:
        chromosome = helper_individual.packchromosome(chromosome)

    # Convert to a flattened pixel sequence
    stego_sequence = MatScanner.scan_genetic(stego, chromosome)
    secret = secret.flatten()
    stego_sequence = Embedder.embed(stego_sequence, secret, chromosome)

    # Reshape the stego image
    return MatScanner.reshape_genetic(stego_sequence, stego.shape, chromosome)
Пример #9
0
class Application:

    def __init__(self):
        self.messenger = Messenger()
        self.embedder = Embedder()

    def start(self):
        text = self.messenger.get_text()
        if text is not None:
            lang = detect(text)
            if lang == "en" or lang == "ne":
                sentences, embeddings = self.embedder.encode(text, lang)
                self.messenger.send_embeddings(sentences, embeddings, lang)
def main():
    embedder = Embedder()
    parser = DocParser()
    # iterate through grobid
    with open('grobid_data.pkl', 'wb') as output:
        for subdir, dirs, files in os.walk(grobid_path):
            print(len(files))
            count = 0
            for file in files:
                print(count)
                count += 1
                # print(os.path.join(subdir, file))

                doc = parser.parseXML(os.path.join(subdir, file))
                doc.id = str(file).split('.')[0]
                if len(doc.abstract) == 0:
                    continue
                doc.embedding = embedder.embed(doc.abstract)
                # pair = variablesFromPair((doc.abstract, doc.title), word_index, embedding_map)
                # if (len(pair[0]) == 0 or len(pair[1]) == 0):
                #     continue
                # doc.embedding = encode(encoder, pair[0])
                pickle.dump(doc, output, pickle.HIGHEST_PROTOCOL)
Пример #11
0
    def __init__(self, vec_dim, dim, options={}):
        """
        Instantiate the object and set options
        """
        print("options:", options)
        self.set_options(options, default)
        options['ttype'] = self.get('ttype')
        self.validation_graph = None
        # self.bilstm           = StackedBiLSTM(vec_dim, dim, options=options)         # A Bi-directional LSTM
        self.bilstm = SimpleBiLSTM(dim,
                                   options=options)  # A Bi-directional LSTM
        self.embedder = Embedder(
            vec_dim, dim, options=options
        )  # Embedder (mostly for upscaling incoming vectors)
        self.class_weights = pu.torchvar(self.get('class_weights'),
                                         ttype=self.get('ttype'))

        # Loss functions
        self.coef1 = pu.torchvar([0.1])
        self.coef2 = pu.torchvar([0.2])
        self.coef3 = pu.torchvar([0.3])
        self.coef4 = pu.torchvar([0.4])
        self.accuracyLoss = pu.AccuracyLoss()
        self.skewLoss = pu.SkewedL1Loss(self.class_weights)
        self.criterion_CE = nn.CrossEntropyLoss(weight=self.class_weights,
                                                size_average=False)
        self.criterion_MSE = nn.MSELoss()
        self.orig_loss = None

        if torch.cuda.is_available():
            self.bilstm = self.bilstm.cuda()
            self.coef1 = self.coef1.cuda()
            self.coef2 = self.coef2.cuda()
            self.coef3 = self.coef3.cuda()
            self.coef4 = self.coef4.cuda()
            self.accuracyLoss = self.accuracyLoss.cuda()
            self.skewLoss = self.skewLoss.cuda()
            self.criterion_CE = self.criterion_CE.cuda()
            self.criterion_MSE = self.criterion_MSE.cuda()

        self.eval_mode()  # eval mode by default
Пример #12
0
def batch_embed(embedder: Embedder, texts: List[str],
                batch_size: int) -> np.ndarray:
    """Get embeddings in batches if GPU memory is not enough.

    Args:
        embedder: Embedder with DistilBERT model.
        texts: List of songs' texts.
        batch_size: Batch size.

    Returns:
        Numpy array of (N, 768) of texts embeddings.

    """
    embeddings = np.zeros((len(texts), 768))

    iters = len(texts) // batch_size
    if len(texts) % batch_size > 0:
        iters += 1

    for i in range(iters):
        batch = texts[i * batch_size:(i + 1) * batch_size]
        emb_batch = embedder.embed(batch)
        embeddings[i * batch_size:(i + 1) * batch_size] = emb_batch
    return embeddings
Пример #13
0
 def __init__(self, cfg):
     super(GenericModel, self).__init__()
     self.cfg = cfg
     self.embedder = Embedder(cfg['embedder'])
     self.reasoner = Reasoner(cfg['reasoner'])
Пример #14
0
    # epochs for METN pre training
    if args.property is 'QED':
        embedder_epochs_num = 1
    elif args.property is 'DRD2':
        embedder_epochs_num = 12
    else:
        print("property must bt 'QED 'or 'DRD2'")
        exit()

    if args.conditional or args.no_pre_train:
            embedder_epochs_num = 0

    if args.is_CDN is True:
        _, _, boundaries = create_dataset(args.property, rebuild_dataset=False)
        dataset_CDN = Dataset('dataset/' + args.property + '/CDN/CDN')
        model_CDN = Embedder(dataset_CDN, 'CDN', args).to(device)
        embedder_epochs_num = args.epochs
        fit(args, model_CDN, embedder_epochs_num, boundaries, is_validation=True)
        exit()

    # prepare dataset
    dataset_file_A, dataset_file_B, boundaries = create_dataset(args.property, args.rebuild_dataset)
    dataset_A = Dataset(dataset_file_A, use_atom_tokenizer=args.tokenize, isB=False)
    dataset_B = Dataset(dataset_file_B, use_atom_tokenizer=args.tokenize, isB=True)

    # create  and pre-train the embedders (METNs)
    model_A = Embedder(dataset_A, 'Embedder A', args).to(device)
    fit(args, model_A, embedder_epochs_num, boundaries, is_validation=True)
    model_B = Embedder(dataset_B, 'Embedder B', args).to(device)
    fit(args, model_B, embedder_epochs_num, boundaries, is_validation=False)
Пример #15
0
from detectors import DetectorSSD, DetectorVJ, DetectorHOG, DetectorMMOD, DetectorLBP
from embedder import Embedder
from recognizer import Recognizer
import recognize_process as rp

detector_vj = DetectorVJ()
detector_ssd = DetectorSSD()
detector_hog = DetectorHOG()
detector_mmod = DetectorMMOD()
detector_lbp = DetectorLBP()
embedder = Embedder()
recognizer = Recognizer()


# вычисление областей ROI всеми детекторами на датасете
def calc_all_detectors():

    print('Haar detector calculating...')
    detector_vj.calc_dataset()

    print('SSD detector calculating...')
    detector_ssd.calc_dataset()

    print('HOG detector calculating...')
    detector_hog.calc_dataset()

    print('MMOD detector calculating...')
    detector_mmod.calc_dataset()

    print('LBP detector calculating...')
    detector_lbp.calc_dataset()
Пример #16
0
        for part in parts:
            if len(part.split()) > 1:
                labels.append(part.split()[0] +
                              ''.join(''.join([w[0].upper(), w[1:].lower()])
                                      for w in part.split()[1:]))
        if useSynonyms:
            predicates = [max(part.split(), key=len) for part in parts]
            if predicates is not None and len(predicates) > 0:
                for predicate in predicates:
                    for part in list(parts):
                        if predicate in part:
                            for syn in gloveModel.gloveModel.most_similar(
                                    predicate.lower()):
                                parts.append(part.replace(predicate, syn[0]))
        if len(parts) == 0:
            resultsExists = False
            parts = list(splitter.split(gen_question, min=minLen, max=maxLen))
    # create embedder part
    vectors = []
    for part in parts:
        vectors.append(gloveModel.getVector(part))
    return vectors, parts, pos, gen_question, labels, resultsExists


# ===== main testing =====
if __name__ == "__main__":
    pp(
        processQuestion(Embedder('../glove.6B.50d.txt'),
                        'who was named as president of the USA',
                        useAPI=True,
                        useSynonyms=True))
Пример #17
0
 def __init__(self):
     self.messenger = Messenger()
     self.embedder = Embedder()
Пример #18
0
class StackedBiLSTM(nn.Module):
    """
    Bi-directional Stacked LSTM, designed to read a whole line and make predictions on each interstitial.  The stacking is done
    simply by using two LSTMs where there was previously one.  They feed into each other before producing output.

    For a line containing N characters, N-1 predictions will be made.

    This layer also commands the "underlying" layers: left2right (A and B), right2left, splitLayer.
    This layer takes care of setting modes, and saving / loading.

    """
    def __init__(self, vec_dim, dim, options={}):
        """
        Instantiate the Layer (which will later be used to connect tensors)

        Parameters
        ----------
        vec_dim : int (width of the vector generated by the vectorizer)

        dim : int (width of vectors in the rest of the network)
        """
        super(StackedBiLSTM, self).__init__()
        
        # Embedder (mostly to upscale the incoming character vectors)
        self.embedder     = Embedder(vec_dim, dim)
        
        # Left to right Stacked LSTM
        self.left2rightA  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors
        self.left2rightB  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors
        
        # Right to left Stacked LSTM
        self.right2leftA  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors
        self.right2leftB  = LSTMCell(dim, options=options)            # Outputs two length-dim vectors

        # Output decision layer
        self.splitLayer  = SplitLayer(dim, options=options)      # Outputs a one-dimensional length-2 vector
        
        self.Lzeros      = pu.var_zeros(dim, ttype=options.get('ttype'))    # Zeros for initialization from left
        self.Lhzeros     = pu.var_zeros(dim, ttype=options.get('ttype'))    # Zeros for initialization (hidden layer)
        self.Rzeros      = pu.var_zeros(dim, ttype=options.get('ttype'))    # same, for the right
        self.Rhzeros     = pu.var_zeros(dim, ttype=options.get('ttype'))
        self.training    = False   # By default, but set to True during training with 'train()'

        
    def get_parameters(self):
        """
        Return a list of trainable parameters for the PyTorch optimizer
        """
        parameters = list(self.parameters())
        parameters.extend( list( self.embedder.parameters() ))
        parameters.extend( list( self.left2rightA.parameters() ))
        parameters.extend( list( self.left2rightB.parameters() ))
        parameters.extend( list( self.right2leftA.parameters() ))
        parameters.extend( list( self.right2leftB.parameters() ))
        parameters.extend( list( self.splitLayer.parameters() ))

        return parameters


    def training_mode(self):
        """
        Set models for training mode
        """
        self.train()
        self.embedder.train()
        self.left2rightA.train()
        self.left2rightB.train()
        self.right2leftA.train()
        self.right2leftB.train()
        self.splitLayer.train()


    def eval_mode(self):
        """
        Set models for evaluation mode, which has, for instance, no dropout
        """
        self.eval()
        self.embedder.eval()
        self.left2rightA.eval()
        self.left2rightB.eval()
        self.right2leftA.eval()
        self.right2leftB.eval()
        self.splitLayer.eval()

        
    def save(self, dirpath):
        """
        Save the current state of the model
        """
        try:
            torch.save(self.state_dict(),  dirpath+'/StackedBiLSTM.pth')
        except:
            raise
        self.embedder.save(dirpath)
        self.left2rightA.save(dirpath, '/left2rightA.pth')
        self.left2rightB.save(dirpath, '/left2rightB.pth')
        self.right2leftA.save(dirpath, '/right2leftA.pth')
        self.right2leftB.save(dirpath, '/right2leftB.pth')
        self.splitLayer.save(dirpath)


    def load(self, dirpath):
        """
        Load the models from a specified directory.  Toss exceptions because models won't exist on the first run.
        """
        try:
            state_dict = torch.load(dirpath+'/StackedBiLSTM.pth', map_location=lambda storage, loc: storage)
        except:
            pass
        self.embedder.load(dirpath)
        self.left2rightA.load(dirpath, '/left2rightA.pth')
        self.left2rightB.load(dirpath, '/left2rightB.pth')
        self.right2leftA.load(dirpath, '/right2leftA.pth')
        self.right2leftB.load(dirpath, '/right2leftB.pth')
        self.splitLayer.load(dirpath)


    def forward(self, line):
        """
        The 'forward()' for this network.  This function takes one sample at a time, where each sample is a line of text.

        Each LSTM, as it proceeds character by character, it makes a prediction *after* having consumed the character on both sides of an interstice.

        Parameters
        ----------
        line : (tensor) list of N vectors (where each vector represents one character)

        Returns
        -------
        (tensor) list of N-1 pairs (each pair of floats represents one interstice-- both the probability of no split and yes split)
        """
        inputs = []    # List of list of tensor.  Will hold the cell and hidden states at each possible split location
        # i.e. the value associated with the first interstice will be at index 0, etc.
        
        ###  Run line through the left2right LSTM  ###
        LCA  = self.Lzeros     # left2right cell state
        LHA  = self.Lhzeros    # left2right hidden state
        LCB  = self.Lzeros     # same for right2left ...
        LHB  = self.Lhzeros
        num = 0
        loc = 0   # First interstice is number 0
        
        for x in line:
            x = self.embedder(x)
        
            # Get the states for interstice number 'loc'
            LCA, LHA = self.left2rightA(x, LCA, LHA)      # Run this character through the Left->-Right LSTM
            LCB, LHB = self.left2rightB(LHA, LCB, LHB)    # Run this character through the second Left->-Right LSTM

            # If we have consumed at least two characters, we will store our first output, which applies to the interstice between the last two characters
            if num >= 1:
                inputs.append( [LCB, LHB] )
                assert(inputs[loc] == [LCB, LHB])
                assert(len(inputs[loc]) == 2)
                loc += 1                                  # For instance, loc=0 represents interstitial between the first and second char
            num += 1
            
        ###  Run line through the right2left LSTM  ###
        RCA  = self.Rzeros
        RHA  = self.Rhzeros
        RCB  = self.Rzeros
        RHB  = self.Rhzeros
        num = 0
        
        for x in reversed(line):                          # Iterate backwards through the same list of vectors
            x = self.embedder(x)
            
            # Get the states for interstice number 'loc'
            RCA, RHA = self.right2leftA(x, RCA, RHA)      # Run this character through the Right->-Left LSTM
            RCB, RHB = self.right2leftB(RHA, RCB, RHB)    # Run this character through the second Right->-Left LSTM
            if num >= 1:
                loc -= 1                                  # Keep this process in reverse alignment with the other
                try:
                    inputs[loc].extend([RCB, RHB])
                    assert(len(inputs[loc]) == 4)
                except:
                    raise
            num += 1   # Just to keep track of how many characters we've consumed
            
        ###  Combine output from both LSTMs and run through the SplitLayer  ###
        #   'preds' will have one fewer element than 'line' because each prediction applies to the interstitial between two elements of 'line'
        preds = None
        for item in inputs:
            LC, LH, RC, RH = item               # Just the output from the second layer of each stacking
            pred = self.splitLayer(LH, RH)      # Splitter layer takes as input the hidden state from both directions
            pred = torch.unsqueeze(pred, 0)     # Add a dimension so that 'tensor_cat()' will work correctly
            if preds is None:
                preds = pred
            else:
                preds = pu.tensor_cat(preds,  pred, 0)   # Build a stack of tensors
                
        try:
            assert(len(line) - 1 == len(preds))
        except:
            err([preds, len(line), len(preds)])
            raise

        return preds
Пример #19
0
CARRIER = "../Carrier2.jpg"
BIOMETRIC = "../FingerPrint.png"
EXPECTED = "./Expected.png"

biometric = cv2.imread(BIOMETRIC)
carrier = cv2.imread(CARRIER)
expected = cv2.cvtColor(cv2.imread(EXPECTED), cv2.COLOR_BGR2GRAY)

BIOMETRIC_SIZE = biometric.shape[0]
actualSize = carrier.shape
corners = [[0, 0], [0, 0], [0, 0], [0, 0]]

embedded = carrier.copy()

em = Embedder(PASSES, KEY, CHANNELS, DEPTH, MASK)
ex = Extractor(PASSES, KEY, ~MASK, SHIFT)

em_psnr = []
ex_psnr = []
for iteration in range(ITERATIONS):
    embedded = em.embed(biometric, embedded)
    filename = './CarrierVsRecoved/Iteration_' + str(iteration) + '.jpg'
    cv2.imwrite(filename, embedded)
    embedded = cv2.imread(filename)
    em_psnr.append(cv2.PSNR(carrier, embedded))

    extracted = ex.extract(embedded, corners, actualSize, BIOMETRIC_SIZE)
    ex_psnr.append(cv2.PSNR(expected, extracted))
    print(iteration, em_psnr[-1], ex_psnr[-1])
Пример #20
0
def recognize_video(detector,
                    embedder: Embedder,
                    recognizer: Recognizer,
                    detector_params='default',
                    source=0):

    # инициализация видеопотока
    print('Starting video stream...')
    vs = VideoStream(src=source).start()

    if not is_detector(detector):
        raise TypeError('Incorrect type of detector')

    # разогрев камеры
    time.sleep(0.5)

    # запуск оценщика пропускной способности FPS
    fps = FPS().start()

    # цикл по фреймам из видео
    while True:

        frame = vs.read()

        if detector_params == 'default':
            faces_roi, boxes = detector.calc_image(frame, return_mode='both')

        elif type(detector) == DetectorSSD:
            confidence = detector_params[0]
            faces_roi, boxes = detector.calc_image(frame,
                                                   confidence=confidence,
                                                   return_mode='both')

        elif type(detector) == DetectorVJ or type(detector) == DetectorLBP:
            [scale_factor, min_neighbors] = detector_params
            faces_roi, boxes = detector.calc_image(frame,
                                                   scale_factor=scale_factor,
                                                   min_neighbors=min_neighbors,
                                                   return_mode='both')

        elif type(detector) == DetectorHOG or type(detector) == DetectorMMOD:
            upsampling_times = detector_params[0]
            faces_roi, boxes = detector.calc_image(
                frame, upsampling_times=upsampling_times, return_mode='both')

        for i in range(len(faces_roi)):

            embeddings = embedder.calc_face(faces_roi[i])
            name = recognizer.recognize(embeddings)
            start_x, start_y, end_x, end_y = boxes[i]

            text = '{}'.format(name)
            y = start_y - 10 if start_y - 10 > 10 else start_y + 10
            cv2.rectangle(frame, (start_x, start_y), (end_x, end_y),
                          (0, 0, 255), 2)
            cv2.putText(frame, text, (start_x, y), cv2.FONT_HERSHEY_SIMPLEX,
                        0.45, (0, 0, 255), 2)

        # обновление счетчика FPS
        fps.update()

        # показ выходного фрейма
        cv2.imshow('Frame', frame)
        key = cv2.waitKey(1) & 0xFF

        # завершение при нажатии 'q'
        if key == ord("q"):
            break

    fps.stop()
    print('Elasped time: {:.2f}'.format(fps.elapsed()))
    print('Approx. FPS: {:.2f}'.format(fps.fps()))

    cv2.destroyAllWindows()
    vs.stop()
Пример #21
0
def recognize_image(detector,
                    embedder: Embedder,
                    recognizer: Recognizer,
                    image,
                    detector_params='default',
                    showing=True,
                    saving_path=''):

    image_t = type(image)

    if image_t is str:
        image = image.replace('/', os.path.sep)
        image = cv2.imread(image)

    elif image_t is list:
        image = np.array(image)

    if not is_detector(detector):
        raise TypeError('Incorrect type of detector')

    # вызов детектора с заданными параметрами
    if detector_params == 'default':
        faces_roi, boxes = detector.calc_image(image, return_mode='both')

    elif type(detector) == DetectorSSD:
        confidence = detector_params[0]
        faces_roi, boxes = detector.calc_image(image,
                                               confidence=confidence,
                                               return_mode='both')

    elif type(detector) == DetectorVJ or type(detector) == DetectorLBP:
        [scale_factor, min_neighbors] = detector_params
        faces_roi, boxes = detector.calc_image(image,
                                               scale_factor=scale_factor,
                                               min_neighbors=min_neighbors,
                                               return_mode='both')

    elif type(detector) == DetectorHOG or type(detector) == DetectorMMOD:
        upsampling_times = detector_params[0]
        faces_roi, boxes = detector.calc_image(
            image, upsampling_times=upsampling_times, return_mode='both')

    # для каждого обнаруженного лица
    for i in range(len(faces_roi)):

        # получение признаков
        embeddings = embedder.calc_face(faces_roi[i])

        # получение класса
        name = recognizer.recognize(embeddings)
        start_x, start_y, end_x, end_y = boxes[i]

        # рисование ограничительной рамки лица, написание имени
        text = '{}'.format(name)
        y = start_y - 10 if start_y - 10 > 10 else start_y + 10
        cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (255, 0, 0),
                      4)
        cv2.putText(image, text, (start_x, y), cv2.FONT_HERSHEY_SIMPLEX, 1.5,
                    (255, 0, 0), 4)

    if saving_path != '':

        cv2.imwrite(saving_path, image)

    # если нужно вывести изоражение на экран
    if showing:

        cv2.imshow('Image', image)
        cv2.waitKey(0)
Пример #22
0
carrier = gl.washBitDepth(carrier, ~GUIDE_MASK)
carrier = gl.generateGuideLines(carrier, GUIDE_MASK)

x1 = int(CARRIER_SIZE[0] / 2) - int(CARRIER_SIZE[0] / 4)
x2 = int(CARRIER_SIZE[0] / 2) + int(CARRIER_SIZE[0] / 4)

y1 = int(CARRIER_SIZE[1] / 2) - int(CARRIER_SIZE[1] / 4)
y2 = int(CARRIER_SIZE[1] / 2) + int(CARRIER_SIZE[1] / 4)
crop = (x1, y1, x2, y2)

untouched = carrier[crop[0]:crop[2], crop[1]:crop[3]]

em_psnr = []
ex_psnr = []
for passes in range(MAX_PASSES):
    em = Embedder(passes, KEY, CHANNELS, DEPTH, MASK)
    ex = Extractor(passes, KEY, ~MASK, SHIFT)

    embedded = em.embed(biometric, carrier)

    cropped = embedded[crop[0]:crop[2], crop[1]:crop[3]]
    margins = gl.getMargins(cropped, GUIDE_MASK)
    corners = gl.marginsToCorners(margins)
    actualSize = gl.getActualSize(cropped, margins)

    extracted = ex.extract(cropped, corners, actualSize, BIOMETRIC_SIZE)
    ex_psnr.append(cv2.PSNR(expected, extracted))
    em_psnr.append(cv2.PSNR(np.uint8(cropped), np.uint8(untouched)))
    print(passes, em_psnr[-1], ex_psnr[-1])

cv2.imwrite('./final.png', extracted)
        for pos in range(max_seq_len):
            for i in range(0, d_model, 2):
                pe[pos, i] = math.sin(pos / (10000**((2 * i) / d_model)))
                pe[pos,
                   i + 1] = math.cos(pos / (10000**((2 * (i + 1)) / d_model)))

        self.pe = pe.unsqueeze(0)
        self.pe.requires_grad = False

    def forward(self, x) -> torch.Tensor:
        ret = math.sqrt(self.d_model) * x + self.pe
        return ret


if __name__ == "__main__":
    train_dl, val_dl, test_dl, TEXT = get_IMDb_Dataloaders_and_TEXT(
        max_length=256, batch_size=24)
    batch = next(iter(train_dl))

    net1 = Embedder(TEXT.vocab.vectors)
    net2 = PositionalEncoder(d_model=300, max_seq_len=256)

    with timer("forward"):
        x = batch.Text[0]
        x1 = net1(x)
        x1 = x1.to(device)
        x2 = net2(x1)

    assert x1.shape == torch.Size([24, 256, 300])
    assert x2.shape == torch.Size([24, 256, 300])
Пример #24
0
    def __init__(
            self,
            params,
            input_vocabulary,
            output_vocabulary,
            anonymizer):
        self.params = params

        self._pc = dy.ParameterCollection()

        if params.new_version:
            self.controller = Controller(output_vocabulary)
        else:
            self.controller = None
        # Create the input embeddings
        self.input_embedder = Embedder(self._pc,
                                       params.input_embedding_size,
                                       name="input-embedding",
                                       vocabulary=input_vocabulary,
                                       anonymizer=anonymizer)

        # Create the output embeddings
        self.output_embedder = Embedder(self._pc,
                                        params.output_embedding_size,
                                        name="output-embedding",
                                        vocabulary=output_vocabulary,
                                        anonymizer=anonymizer)

        # Create the encoder
        encoder_input_size = params.input_embedding_size
        if params.discourse_level_lstm:
            encoder_input_size += params.encoder_state_size / 2

        self.utterance_encoder = Encoder(params.encoder_num_layers,
                                         encoder_input_size,
                                         params.encoder_state_size,
                                         self._pc)

        # Positional embedder for utterances
        attention_key_size = params.encoder_state_size
        if params.state_positional_embeddings:
            attention_key_size += params.positional_embedding_size
            self.positional_embedder = Embedder(
                self._pc,
                params.positional_embedding_size,
                name="positional-embedding",
                num_tokens=params.maximum_utterances)

        # Create the discourse-level LSTM parameters
        if params.discourse_level_lstm:
            self.discourse_lstms = du.create_multilayer_lstm_params(
                1, params.encoder_state_size, params.encoder_state_size / 2, self._pc, "LSTM-t")
            self.initial_discourse_state = du.add_params(self._pc, tuple(
                [params.encoder_state_size / 2]), "V-turn-state-0")

        # Snippet encoder
        final_snippet_size = 0
        if params.use_snippets and not params.previous_decoder_snippet_encoding:
            snippet_encoding_size = int(params.encoder_state_size / 2)
            final_snippet_size = params.encoder_state_size
            if params.snippet_age_embedding:
                snippet_encoding_size -= int(
                    params.snippet_age_embedding_size / 4)
                self.snippet_age_embedder = Embedder(
                    self._pc,
                    params.snippet_age_embedding_size,
                    name="snippet-age-embedding",
                    num_tokens=params.max_snippet_age_embedding)
                final_snippet_size = params.encoder_state_size \
                    + params.snippet_age_embedding_size / 2

            self.snippet_encoder = Encoder(params.snippet_num_layers,
                                           params.output_embedding_size,
                                           snippet_encoding_size,
                                           self._pc)
        token_predictor = construct_token_predictor(self._pc,
                                                    params,
                                                    output_vocabulary,
                                                    attention_key_size,
                                                    final_snippet_size,
                                                    anonymizer)

        # 注意:此处在input增加了decoder_state_size维度
        self.decoder = SequencePredictor(
            params,
            params.output_embedding_size +
            attention_key_size + params.decoder_state_size,
            self.output_embedder,
            self._pc,
            token_predictor)

        self.trainer = dy.AdamTrainer(
            self._pc, alpha=params.initial_learning_rate)
        self.dropout = 0.
Пример #25
0
def make_dataset(images_path='dataset'):

    detector = DetectorSSD()

    embedder = Embedder()

    images_path = images_path.replace('/', os.path.sep)

    ind_image_paths = list(paths.list_images(images_path))

    # списки для лиц и имен, взаимосоответствующие по индексу
    known_ems = []
    known_names = []

    for (i, image_path) in enumerate(ind_image_paths):
        print(i + 1)
        # получение имя из пути к файлу
        name = image_path.split(os.path.sep)[-2]

        image = cv2.imread(image_path)

        # ОБЫЧНОЕ
        temp_img = image.copy()
        face = detector.calc_image(temp_img)[0]

        embeddings = embedder.calc_face(face)
        known_ems.append(embeddings.flatten())
        known_names.append(name)

        # ТЕМНЕЕ 4
        for i in range(1, 5):
            temp_img = image.copy()
            face = detector.calc_image(ie.darken(temp_img, i / 10))
            if len(face) > 0:
                embeddings = embedder.calc_face(face[0])
                known_ems.append(embeddings.flatten())
                known_names.append(name)

        # СВЕТЛЕЕ 4

        for i in range(1, 5):
            temp_img = image.copy()
            face = detector.calc_image(ie.brighten(temp_img, i / 10))
            if len(face) > 0:
                embeddings = embedder.calc_face(face[0])
                known_ems.append(embeddings.flatten())
                known_names.append(name)

        # ДОЖДЬ 3
        temp_img = image.copy()
        face = detector.calc_image(ie.add_rain(temp_img, rain_type='drizzle'))
        if len(face) > 0:
            embeddings = embedder.calc_face(face[0])
            known_ems.append(embeddings.flatten())
            known_names.append(name)

        temp_img = image.copy()
        face = detector.calc_image(ie.add_rain(temp_img, rain_type='heavy'))
        if len(face) > 0:
            embeddings = embedder.calc_face(face[0])
            known_ems.append(embeddings.flatten())
            known_names.append(name)

        temp_img = image.copy()
        face = detector.calc_image(
            ie.add_rain(temp_img, rain_type='torrential'))
        if len(face) > 0:
            embeddings = embedder.calc_face(face[0])
            known_ems.append(embeddings.flatten())
            known_names.append(name)

        # ТУМАН 4
        for i in range(1, 5):
            temp_img = image.copy()
            face = detector.calc_image(ie.add_fog(temp_img, i / 10))
            if len(face) > 0:
                embeddings = embedder.calc_face(face[0])
                known_ems.append(embeddings.flatten())
                known_names.append(name)

    embeddings = {'embeddings': known_ems, 'names': known_names}
    f = open('weather_ems/ems_weather_4.pickle', 'wb')
    f.write(pickle.dumps(embeddings))
    f.close()

    print(len(known_ems), len(known_names))
    return known_ems, known_names