Пример #1
0
def test_normal_de(**kwargs):
    _test_normal(moves.DEMove(), **kwargs)
Пример #2
0
def fit_King_prof(nchains,
                  nruns,
                  nburn,
                  x,
                  y,
                  cl_cent,
                  field_dens,
                  cl_rad,
                  n_memb_i,
                  rt_max_f,
                  N_integ=1000,
                  ndim=2,
                  N_conv=1000,
                  tau_stable=0.05):
    """
    rt_max_f: factor that caps the maximum tidal radius, given the previously
    estimated cluster radius.

    HARDCODED:
    N_integ : number of values used in the tidal radius array.
    N_conv
    tau_stable
    """

    from emcee import ensemble
    from emcee import moves

    # HARDCODED
    # mv = moves.StretchMove()
    # mv = moves.KDEMove()
    mv = [
        (moves.DESnookerMove(), 0.1),
        (moves.DEMove(), 0.9 * 0.9),
        (moves.DEMove(gamma0=1.0), 0.9 * 0.1),
    ]

    # HARDCODED
    # Steps to store Bayes params.
    KP_steps = int(nruns * .01)

    xy = np.array((x, y)).T
    # area_tot = np.ptp(x) * np.ptp(y)
    # cx, cy = cl_cent

    # # Frame limits
    # x0, x1 = min(xy.T[0]), max(xy.T[0])
    # y0, y1 = min(xy.T[1]), max(xy.T[1])
    # dx0, dx1 = abs(cl_cent[0] - x0), abs(cl_cent[0] - x1)
    # dy0, dy1 = abs(cl_cent[1] - y0), abs(cl_cent[1] - y1)
    # dxy = min(dx0, dx1, dy0, dy1)

    # # Parameters used to estimate the fraction of cluster area inside the
    # # frame if it spills outside of it.
    # circarea_pars = (dxy, x0, x1, y0, y1, N_MC, rand_01_MC, cos_t, sin_t)

    # This assumes that the tidal radius can not be larger than 'rt_max' times
    # the estimated cluster radius.
    rt_max = rt_max_f * cl_rad
    # Tidal radius array. Used for integrating
    rt_rang = np.linspace(0., rt_max, int(rt_max_f * N_integ))

    # if ndim == 2:
    # Dimensions: rc, rt
    # Initial guesses.
    rc_pos0 = np.random.uniform(.05 * rt_max, rt_max, nchains)
    rt_pos0 = np.random.uniform(rc_pos0, rt_max, nchains)
    pos0 = np.array([rc_pos0, rt_pos0]).T

    # Stars inside the cut-out given by the 'rt_max' value.
    xy_cent_dist = spatial.distance.cdist([cl_cent], xy)[0]
    msk = xy_cent_dist <= rt_max
    r_in = xy_cent_dist[msk]

    # Fixed values
    fd, N_memb = field_dens, n_memb_i

    # elif KP_mode == 3:
    #     # Dimensions: fd, rc, rt
    #     ndim = 3
    #     # Initial guesses.
    #     fd_pos0 = np.random.uniform(.5 * fd, 2. * fd, nchains)
    #     rc_pos0 = np.random.uniform(.05 * rt_max, rt_max, nchains)
    #     rt_pos0 = np.random.uniform(rc_pos0, rt_max, nchains)
    #     pos0 = np.array([fd_pos0, rc_pos0, rt_pos0]).T

    #     # Stars inside the cut-out given by the 'rt_max' value.
    #     xy_cent_dist = spatial.distance.cdist([cl_cent], xy)[0]
    #     msk = xy_cent_dist <= rt_max
    #     r_in = xy_cent_dist[msk]

    #     fd, N_memb, fd_max = None, None, r_in.size / rt_max**2

    # elif ndim == 4:
    #     # Dimensions: cent_x, cent_y, rc, rt
    #     ndim = 4
    #     # Initial guesses.
    #     cx_pos0 = np.random.uniform(
    #         cx - .9 * cl_rad, cx + .9 * cl_rad, nchains)
    #     cy_pos0 = np.random.uniform(
    #         cy - .9 * cl_rad, cy + .9 * cl_rad, nchains)
    #     rc_pos0 = np.random.uniform(.05 * rt_max, rt_max, nchains)
    #     rt_pos0 = np.random.uniform(rc_pos0, rt_max, nchains)
    #     pos0 = np.array([cx_pos0, cy_pos0, rc_pos0, rt_pos0]).T
    #     r_in = []

    args = {
        'rt_max': rt_max,
        'rt_rang': rt_rang,
        'fd': fd,
        'N_memb': N_memb,
        'r_in': r_in
    }

    # emcee sampler
    sampler = ensemble.EnsembleSampler(nchains,
                                       ndim,
                                       lnprob,
                                       kwargs=args,
                                       moves=mv)

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")

        tau_index, autocorr_vals, afs = 0, np.empty(nruns), np.empty(nruns)
        old_tau = np.inf
        for i, (pos, prob,
                stat) in enumerate(sampler.sample(pos0, iterations=nruns)):

            # Every X steps
            if i % KP_steps and i < (nruns - 1):
                continue

            afs[tau_index] = np.mean(sampler.acceptance_fraction)
            tau = np.mean(sampler.get_autocorr_time(tol=0))
            autocorr_vals[tau_index] = tau
            tau_index += 1

            # Check convergence
            converged = tau * (N_conv / nchains) < i * nburn
            converged &= np.abs(old_tau - tau) / tau < tau_stable
            if converged:
                print("")
                break
            old_tau = tau

            update_progress.updt(nruns, i + 1)

        KP_mean_afs = afs[:tau_index]
        KP_tau_autocorr = autocorr_vals[:tau_index]
        nburn = int(i * nburn)
        samples = sampler.get_chain(discard=nburn, flat=True)

        # if ndim == 4:
        #     cx, cy, rc, rt = np.mean(samples, 0)
        #     print(cx, cy)
        #     e_cx, e_cy, e_rc, e_rt = np.percentile(samples, (16, 84), 0).T
        # if ndim == 2:
        rc, rt = np.mean(samples, 0)
        rc_16, rc_50, rc_84, rt_16, rt_50, rt_84 = np.percentile(
            samples, (16, 50, 84), 0).T.flatten()
        # Mode and KDE to plot
        # This simulates the 'fundam_params and 'varIdxs' arrays.
        fp, vi = [[-np.inf, np.inf], [-np.inf, np.inf]], [0, 1]
        KP_Bys_mode, KP_Bayes_kde = modeKDE(fp, vi, samples.T)

        # Store: 16, median, 84, mean, mode
        KP_Bys_rc = np.array([rc_16, rc_50, rc_84, rc, KP_Bys_mode[0]])
        KP_Bys_rt = np.array([rt_16, rt_50, rt_84, rt, KP_Bys_mode[1]])

        # Effective sample size
        KP_ESS = samples.shape[0] / np.mean(sampler.get_autocorr_time(tol=0))

        # For plotting, (nsteps, nchains, ndim)
        KP_samples = sampler.get_chain()

    # Central density, for plotting.
    # if ndim == 4:
    #     N_memb = rMmembN(
    #         fd, rt_max, rt, xy, area_tot, (cx, cy), circarea_pars)[-1]
    KP_cd = centDens(N_memb, rc, rt, rt_rang)

    return KP_cd, KP_steps, KP_mean_afs, KP_tau_autocorr, KP_ESS, KP_samples,\
        KP_Bys_rc, KP_Bys_rt, KP_Bayes_kde
Пример #3
0
def test_normal_de_no_gamma(**kwargs):
    _test_normal(moves.DEMove(gamma0=1.0), **kwargs)
Пример #4
0
def test_uniform_de(**kwargs):
    _test_uniform(moves.DEMove(), **kwargs)
Пример #5
0
def fit_King_prof(nchains,
                  nruns,
                  nburn,
                  x,
                  y,
                  cl_cent,
                  field_dens,
                  cl_rad,
                  n_memb_i,
                  rt_max_f,
                  N_integ=1000,
                  N_conv=1000,
                  tau_stable=0.05):
    """
    rt_max_f: factor that caps the maximum tidal radius, given the previously
    estimated cluster radius.
    """

    from emcee import ensemble
    from emcee import moves

    # HARDCODED ##########################
    # Move used by emcee
    mv = [
        (moves.DESnookerMove(), 0.1),
        (moves.DEMove(), 0.9 * 0.9),
        (moves.DEMove(gamma0=1.0), 0.9 * 0.1),
    ]
    # mv = moves.StretchMove()
    # mv = moves.KDEMove()

    # Steps to store Bayes params.
    KP_steps = int(nruns * .01)

    # Field density and estimated number of members (previously
    # obtained)
    fd = field_dens

    # Fix N_memb
    N_memb = n_memb_i
    # Estimate N_memb with each sampler step
    # N_memb = None

    # Select the number of parameters to fit:
    # ndim = 2 fits (rc, rt)
    # ndim = 4 fits (rc, rt, ecc, theta)
    ndim = 2
    # HARDCODED ##########################

    # The tidal radius can not be larger than 'rt_max' times the estimated
    # "optimal" cluster radius. Used as a prior.
    rt_max = rt_max_f * cl_rad
    # Tidal radius array. Used for integrating
    rt_rang = np.linspace(0., rt_max, int(rt_max_f * N_integ))

    # Initial positions for the sampler.
    if ndim == 2:
        # Dimensions: rc, rt
        rc_pos0 = np.random.uniform(.05 * rt_max, rt_max, nchains)
        rt_pos0 = np.random.uniform(rc_pos0, rt_max, nchains)
        pos0 = np.array([rc_pos0, rt_pos0]).T
    elif ndim == 4:
        # Dimensions: rc, rt, ecc, theta
        rc_pos0 = np.random.uniform(.05 * rt_max, rt_max, nchains)
        rt_pos0 = np.random.uniform(rc_pos0, rt_max, nchains)
        ecc = np.random.uniform(0., 1., nchains)
        theta = np.random.uniform(0., np.pi, nchains)
        pos0 = np.array([rc_pos0, rt_pos0, ecc, theta]).T

    # Identify stars inside the cut-out given by the 'rt_max' value. Only these
    # stars will be processed below.
    xy = np.array((x, y)).T
    xy_cent_dist = spatial.distance.cdist([cl_cent], xy)[0]
    msk = xy_cent_dist <= rt_max
    xy_in = xy[msk].T
    r_in = xy_cent_dist[msk]

    args = {
        'ndim': ndim,
        'rt_max': rt_max,
        'cl_cent': cl_cent,
        'fd': fd,
        'N_memb': N_memb,
        'rt_rang': rt_rang,
        'xy_in': xy_in,
        'r_in': r_in
    }

    # emcee sampler
    sampler = ensemble.EnsembleSampler(nchains,
                                       ndim,
                                       lnprob,
                                       kwargs=args,
                                       moves=mv)

    # Run the smpler hiding some warnings
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")

        tau_index, autocorr_vals, afs = 0, np.empty(nruns), np.empty(nruns)
        old_tau = np.inf
        for i, (pos, prob,
                stat) in enumerate(sampler.sample(pos0, iterations=nruns)):

            # Every X steps
            if i % KP_steps and i < (nruns - 1):
                continue

            afs[tau_index] = np.mean(sampler.acceptance_fraction)
            tau = np.mean(sampler.get_autocorr_time(tol=0))
            autocorr_vals[tau_index] = tau
            tau_index += 1

            # Check convergence
            converged = tau * (N_conv / nchains) < i * nburn
            converged &= np.abs(old_tau - tau) / tau < tau_stable
            if converged:
                print("")
                break
            old_tau = tau

            update_progress.updt(nruns, i + 1)

        KP_mean_afs = afs[:tau_index]
        KP_tau_autocorr = autocorr_vals[:tau_index]

        # Remove burn-in
        nburn = int(i * nburn)
        samples = sampler.get_chain(discard=nburn, flat=True)

        # Extract mean, median, mode, 16th, 84th percentiles for each parameter
        rc, rt = np.mean(samples[:, :2], 0)
        rc_16, rc_50, rc_84, rt_16, rt_50, rt_84 = np.percentile(
            samples[:, :2], (16, 50, 84), 0).T.flatten()

        if ndim == 2:
            ecc, theta = 0., 0.
            ecc_16, ecc_50, ecc_84, theta_16, theta_50, theta_84 =\
                [np.array([np.nan] * 3) for _ in range(6)]
            # Mode and KDE to plot
            # This simulates the 'fundam_params and 'varIdxs' arrays.
            fp, vi = [[-np.inf, np.inf], [-np.inf, np.inf]], [0, 1]
            KP_Bys_mode, KP_Bayes_kde = modeKDE(fp, vi, samples.T)
            KP_Bys_mode += [0., 0.]
            KP_Bayes_kde += [[], []]

        elif ndim == 4:
            ecc = np.mean(samples[:, 2], 0)
            theta = circmean(samples[:, 3] * u.rad).value
            # Beware: the median and percentiles for theta might not be
            # properly defined.
            ecc_16, ecc_50, ecc_84, theta_16, theta_50, theta_84 =\
                np.percentile(samples[:, 2:], (16, 50, 84), 0).T.flatten()
            # Estimate the mode
            fp, vi = [[-np.inf, np.inf], [-np.inf, np.inf], [-np.inf, np.inf],
                      [-np.inf, np.inf]], [0, 1, 2, 3]
            KP_Bys_mode, KP_Bayes_kde = modeKDE(fp, vi, samples.T)

        # Store: 16th, median, 84th, mean, mode
        KP_Bys_rc = np.array([rc_16, rc_50, rc_84, rc, KP_Bys_mode[0]])
        KP_Bys_rt = np.array([rt_16, rt_50, rt_84, rt, KP_Bys_mode[1]])
        KP_Bys_ecc = np.array([ecc_16, ecc_50, ecc_84, ecc, KP_Bys_mode[2]])

        KP_Bys_theta = np.array(
            [theta_16, theta_50, theta_84, theta, KP_Bys_mode[3]])

        # Effective sample size
        KP_ESS = samples.shape[0] / np.mean(sampler.get_autocorr_time(tol=0))

        # For plotting, (nsteps, nchains, ndim)
        KP_samples = sampler.get_chain()

    # Central density, for plotting. Use mean values for all the parameters.
    KP_cd = lnlike((rc, rt, ecc, theta), ndim, rt_max, cl_cent, fd, N_memb,
                   xy_in, r_in, rt_rang, True)

    return KP_cd, KP_steps, KP_mean_afs, KP_tau_autocorr, KP_ESS, KP_samples,\
        KP_Bys_rc, KP_Bys_rt, KP_Bys_ecc, KP_Bys_theta, KP_Bayes_kde
Пример #6
0
def test_normal_de_no_gamma(**kwargs):
    _test_normal(moves.DEMove(1e-2, 1e-2), **kwargs)
Пример #7
0
 def test_uniform_de(self, generator):
     _test_uniform(moves.DEMove(), generator=generator)
Пример #8
0
 def test_normal_de_no_gamma(self, generator):
     _test_normal(moves.DEMove(gamma0=1.0), generator=generator)
Пример #9
0
 def test_normal_de(self, generator):
     _test_normal(moves.DEMove(), generator=generator)