def assemble_dynamic_pysb(self, mode='local', bucket=EMMAA_BUCKET_NAME): """Assemble a version of a PySB model for dynamic simulation.""" # First need to run regular assembly if not self.assembled_stmts: self.run_assembly() if 'dynamic' in self.assembly_config: logger.info('Assembling dynamic PySB model') ap = AssemblyPipeline(self.assembly_config['dynamic']) # Not overwrite assembled stmts stmts = deepcopy(self.assembled_stmts) self.dynamic_assembled_stmts = ap.run(stmts) pa = PysbAssembler() pa.add_statements(self.dynamic_assembled_stmts) pysb_model = pa.make_model() if mode == 's3' and 'gromet' in self.export_formats: fname = f'gromet_{self.date_str}.json' pysb_to_gromet(pysb_model, self.name, self.dynamic_assembled_stmts, fname) logger.info(f'Uploading {fname}') client = get_s3_client(unsigned=False) client.upload_file(fname, bucket, f'exports/{self.name}/{fname}') return pysb_model logger.info('Did not find dynamic assembly steps')
def test_handler(): """Test the lambda handler locally.""" dts = make_date_str() key = f'models/test/test_model_{dts}.pkl' event = {'Records': [{'s3': {'object': {'key': key}}}]} context = None res = lambda_handler(event, context) print(res) assert res['statusCode'] == 200, res assert res['result'] == 'SUCCESS', res assert res['job_id'], res job_id = res['job_id'] results = {} monitor = BatchMonitor(QUEUE, [{'jobId': job_id}]) monitor.watch_and_wait(result_record=results) print(results) assert job_id in [job_def['jobId'] for job_def in results['succeeded']], \ results['failed'] s3 = get_s3_client() s3_res = s3.list_objects(Bucket='emmaa', Prefix='results/test/' + dts[:10]) print(s3_res.keys()) assert s3_res, s3_res
def setup_bucket(add_model=False, add_mm=False, add_tests=False, add_results=False, add_model_stats=False, add_test_stats=False): """ This function creates a new (local) bucket mocking S3 bucket at each call. Then all calls to S3 are calling this bucket instead of real S3 bucket. Depending on the test we might or might not need the bucket to contain different files. For faster computation, only required files for the test are generated and stored in the bucket. Files can be added by setting corresponding arguments to True when calling this function. """ # Local imports are recommended when using moto from emmaa.util import get_s3_client from emmaa.model import save_config_to_s3 from emmaa.model_tests import ModelManager, save_model_manager_to_s3, \ StatementCheckingTest # Create a mock s3 bucket client = get_s3_client() bucket = client.create_bucket(Bucket=TEST_BUCKET_NAME, ACL='public-read') date_str = make_date_str() emmaa_model = None if add_model: # Put config and model files into empty bucket config_dict = { 'ndex': { 'network': 'a08479d1-24ce-11e9-bb6a-0ac135e8bacf' }, 'search_terms': [{ 'db_refs': { 'HGNC': '20974' }, 'name': 'MAPK1', 'search_term': 'MAPK1', 'type': 'gene' }], 'test': { 'test_corpus': 'simple_tests', 'default_test_corpus': 'simple_tests' }, 'human_readable_name': 'Test Model', 'assembly': [{ 'function': 'filter_no_hypothesis' }, { 'function': 'map_grounding' }, { 'function': 'filter_grounded_only' }, { 'function': 'filter_human_only' }, { 'function': 'map_sequence' }, { 'function': 'run_preassembly', 'kwargs': { 'return_toplevel': False } }, { 'function': 'filter_top_level' }] } save_config_to_s3('test', config_dict, bucket=TEST_BUCKET_NAME) emmaa_model = create_model() emmaa_model.save_to_s3(bucket=TEST_BUCKET_NAME) if add_mm: # Add a ModelManager to bucket if not emmaa_model: emmaa_model = create_model() mm = ModelManager(emmaa_model) mm.date_str = date_str mm.save_assembled_statements(upload_to_db=False, bucket=TEST_BUCKET_NAME) save_model_manager_to_s3('test', mm, bucket=TEST_BUCKET_NAME) if add_tests: tests = [ StatementCheckingTest(Activation(Agent('BRAF'), Agent('MAPK1'))) ] test_dict = { 'test_data': { 'description': 'Tests for functionality testing' }, 'tests': tests } client.put_object(Body=pickle.dumps(test_dict), Bucket=TEST_BUCKET_NAME, Key=f'tests/simple_tests.pkl') if add_results: client.put_object( Body=json.dumps(previous_results, indent=1), Bucket=TEST_BUCKET_NAME, Key=f'results/test/results_simple_tests_{date_str}.json') if add_model_stats: client.put_object(Body=json.dumps(previous_model_stats, indent=1), Bucket=TEST_BUCKET_NAME, Key=f'model_stats/test/model_stats_{date_str}.json') if add_test_stats: client.put_object( Body=json.dumps(previous_test_stats, indent=1), Bucket=TEST_BUCKET_NAME, Key=f'stats/test/test_stats_simple_tests_{date_str}.json') return client
def run_model_tests_from_s3(model_name, upload_mm=True, upload_results=True, upload_stats=True, registered_queries=True, db=None): """Run a given set of tests on a given model, both loaded from S3. After loading both the model and the set of tests, model/test overlap is determined using a ScopeTestConnector and tests are run. Parameters ---------- model_name : str Name of EmmaaModel to load from S3. upload_mm : Optional[bool] Whether to upload a model manager instance to S3 as a pickle file. Default: True upload_results : Optional[bool] Whether to upload test results to S3 in JSON format. Can be set to False when running tests. Default: True upload_stats : Optional[bool] Whether to upload latest statistics about model and a test. Default: True registered_queries : Optional[bool] If True, registered queries are fetched from the database and executed, the results are then saved to the database. Default: True db : Optional[emmaa.db.manager.EmmaaDatabaseManager] If given over-rides the default primary database. Returns ------- emmaa.model_tests.ModelManager Instance of ModelManager containing the model data, list of applied tests and the test results. emmaa.analyze_test_results.StatsGenerator Instance of StatsGenerator containing statistics about model and test. """ model = EmmaaModel.load_from_s3(model_name) test_corpus = model.test_config.get('test_corpus', 'large_corpus_tests.pkl') tests = load_tests_from_s3(test_corpus) mm = ModelManager(model) if upload_mm: save_model_manager_to_s3(model_name, mm) tm = TestManager([mm], tests) tm.make_tests(ScopeTestConnector()) tm.run_tests() results_json_dict = mm.results_to_json() results_json_str = json.dumps(results_json_dict, indent=1) # Optionally upload test results to S3 if upload_results: client = get_s3_client(unsigned=False) date_str = make_date_str() result_key = f'results/{model_name}/results_{date_str}.json' logger.info(f'Uploading test results to {result_key}') client.put_object(Bucket='emmaa', Key=result_key, Body=results_json_str.encode('utf8')) tr = TestRound(results_json_dict) sg = StatsGenerator(model_name, latest_round=tr) sg.make_stats() # Optionally upload statistics to S3 if upload_stats: sg.save_to_s3() if registered_queries: qm = QueryManager(db=db, model_managers=[mm]) qm.answer_registered_queries(model_name) return (mm, sg)
def save_model_manager_to_s3(model_name, model_manager): client = get_s3_client(unsigned=False) logger.info(f'Saving a model manager for {model_name} model to S3.') client.put_object(Body=pickle.dumps(model_manager), Bucket='emmaa', Key=f'results/{model_name}/latest_model_manager.pkl')