Пример #1
0
    def fields(self, m):

        if m is not None:
            self.model = m

        if self.verbose:
            print(">> Compute fields")

        # TODO: this for loop can slow down the speed, cythonize below for loop
        T1 = self.rho[self.n_layer - 1] * np.ones_like(self.lambd)
        for ii in range(self.n_layer - 1, 0, -1):
            rho0 = self.rho[ii - 1]
            t0 = self.thicknesses[ii - 1]
            T0 = (T1 + rho0 * np.tanh(self.lambd * t0)) / (
                1.0 + (T1 * np.tanh(self.lambd * t0) / rho0))
            T1 = T0
        PJ = (T0, None, None)
        try:
            voltage = dlf(
                PJ,
                self.lambd,
                self.offset,
                self.fhtfilt,
                self.hankel_pts_per_dec,
                factAng=None,
                ab=33,
            ).real / (2 * np.pi)
        except TypeError:
            voltage = dlf(
                PJ,
                self.lambd,
                self.offset,
                self.fhtfilt,
                self.hankel_pts_per_dec,
                ang_fact=None,
                ab=33,
            ).real / (2 * np.pi)

        # Assume dipole-dipole
        V = voltage.reshape((self.survey.nD, 4), order="F")
        data = V[:, 0] + V[:, 1] - (V[:, 2] + V[:, 3])

        if self.data_type == "apparent_resistivity":
            data /= self.geometric_factor

        return data
Пример #2
0
def test_dlf():  # 10. dlf
    # DLF is integral of hankel_dlf and fourier_dlf, and therefore tested a lot
    # through those. Here we just ensure status quo. And if a problem arises in
    # hankel_dlf or fourier_dlf, it would make it obvious if the problem arises
    # from dlf or not.

    # Check DLF for Fourier
    t = DATA['t'][()]
    for i in [0, 1, 2]:
        dat = DATA['fourier_dlf' + str(i)][()]
        tres = DATA['tEM' + str(i)][()]
        finp = dat['fEM']
        ftarg = dat['ftarg']
        if i > 0:
            finp /= 2j * np.pi * dat['f']
        if i > 1:
            finp *= -1

        if ftarg['pts_per_dec'] == 0:
            finp = finp.reshape(t.size, -1)

        tEM = transform.dlf(finp,
                            2 * np.pi * dat['f'],
                            t,
                            ftarg['dlf'],
                            ftarg['pts_per_dec'],
                            kind=ftarg['kind'])
        assert_allclose(tEM * 2 / np.pi, tres, rtol=1e-3)

    # Check DLF for Hankel
    for ab in [12, 22, 13, 33]:
        model = utils.check_model([], 10, 2, 2, 5, 1, 10, True, 0)
        depth, res, aniso, epermH, epermV, mpermH, mpermV, _ = model
        frequency = utils.check_frequency(1, res, aniso, epermH, epermV,
                                          mpermH, mpermV, 0)
        _, etaH, etaV, zetaH, zetaV = frequency
        src = [0, 0, 0]
        src, nsrc = utils.check_dipole(src, 'src', 0)
        ab, msrc, mrec = utils.check_ab(ab, 0)
        ht, htarg = utils.check_hankel('dlf', {}, 0)
        xdirect = False  # Important, as we want to comp. wavenumber-frequency!
        rec = [np.arange(1, 11) * 500, np.zeros(10), 300]
        rec, nrec = utils.check_dipole(rec, 'rec', 0)
        off, angle = utils.get_off_ang(src, rec, nsrc, nrec, 0)
        lsrc, zsrc = utils.get_layer_nr(src, depth)
        lrec, zrec = utils.get_layer_nr(rec, depth)
        dlf = htarg['dlf']
        pts_per_dec = htarg['pts_per_dec']

        # # # 0. No Spline # # #

        # dlf calculation
        lambd = dlf.base / off[:, None]
        PJ = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                               zetaH, zetaV, lambd, ab, xdirect, msrc, mrec)

        # Angle factor, one example with None instead of 1's.
        if ab != 13:
            ang_fact = kernel.angle_factor(angle, ab, msrc, mrec)
        else:
            ang_fact = None

        # dlf calculation
        fEM0 = transform.dlf(PJ, lambd, off, dlf, 0, ang_fact=ang_fact, ab=ab)

        # Analytical frequency-domain solution
        freq1 = kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH,
                                 zetaV, ab, msrc, mrec)
        # Compare
        assert_allclose(np.squeeze(fEM0), np.squeeze(freq1))

        # # # 1. Spline; One angle # # #

        # dlf calculation
        lambd, _ = transform.get_dlf_points(dlf, off, pts_per_dec)
        PJ1 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec)

        # dlf calculation
        fEM1 = transform.dlf(PJ1,
                             lambd,
                             off,
                             dlf,
                             pts_per_dec,
                             ang_fact=ang_fact,
                             ab=ab)

        # Compare
        assert_allclose(np.squeeze(fEM1), np.squeeze(freq1), rtol=1e-4)

        # # # 2.a Lagged; One angle # # #
        rec = [np.arange(1, 11) * 500, np.arange(-5, 5) * 0, 300]
        rec, nrec = utils.check_dipole(rec, 'rec', 0)
        off, angle = utils.get_off_ang(src, rec, nsrc, nrec, 0)

        # dlf calculation
        lambd, _ = transform.get_dlf_points(dlf, off, -1)
        PJ2 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec)
        ang_fact = kernel.angle_factor(angle, ab, msrc, mrec)

        # dlf calculation
        fEM2 = transform.dlf(PJ2,
                             lambd,
                             off,
                             dlf,
                             -1,
                             ang_fact=ang_fact,
                             ab=ab)

        # Analytical frequency-domain solution
        freq2 = kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH,
                                 zetaV, ab, msrc, mrec)
        # Compare
        assert_allclose(np.squeeze(fEM2), np.squeeze(freq2), rtol=1e-4)

        # # # 2.b Lagged; Multi angle # # #
        rec = [np.arange(1, 11) * 500, np.arange(-5, 5) * 200, 300]
        rec, nrec = utils.check_dipole(rec, 'rec', 0)
        off, angle = utils.get_off_ang(src, rec, nsrc, nrec, 0)

        # dlf calculation
        lambd, _ = transform.get_dlf_points(dlf, off, -1)
        PJ2 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec)
        ang_fact = kernel.angle_factor(angle, ab, msrc, mrec)

        # dlf calculation
        fEM2 = transform.dlf(PJ2,
                             lambd,
                             off,
                             dlf,
                             -1,
                             ang_fact=ang_fact,
                             ab=ab)

        # Analytical frequency-domain solution
        freq2 = kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH,
                                 zetaV, ab, msrc, mrec)
        # Compare
        assert_allclose(np.squeeze(fEM2), np.squeeze(freq2), rtol=1e-4)

        # # # 3. Spline; Multi angle # # #

        lambd, _ = transform.get_dlf_points(dlf, off, 30)
        # dlf calculation
        PJ3 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec)

        # dlf calculation
        fEM3 = transform.dlf(PJ3,
                             lambd,
                             off,
                             dlf,
                             30,
                             ang_fact=ang_fact,
                             ab=ab)

        # Compare
        assert_allclose(np.squeeze(fEM3), np.squeeze(freq2), rtol=1e-3)
Пример #3
0
def test_dlf():  # 10. dlf
    # DLF is integral of fht and ffht, and therefore tested a lot through
    # those. Here we just ensure status quo. And if a problem arises in fht or
    # ffht, it would make it obvious if the problem arises from dlf or not.

    # Check DLF for Fourier
    t = DATA['t'][()]
    for i in [0, 1, 2]:
        dat = DATA['ffht' + str(i)][()]
        tres = DATA['tEM' + str(i)][()]
        finp = dat['fEM']
        ftarg = dat['ftarg']
        if i > 0:
            finp /= 2j * np.pi * dat['f']
        if i > 1:
            finp *= -1

        if ftarg[1] == 0:
            finp = finp.reshape(t.size, -1)

        tEM = transform.dlf(finp,
                            2 * np.pi * dat['f'],
                            t,
                            ftarg[0],
                            ftarg[1],
                            kind=ftarg[2])
        assert_allclose(tEM * 2 / np.pi, tres, rtol=1e-3)

    # Check DLF for Hankel
    for ab in [12, 22, 13, 33]:
        model = utils.check_model([], 10, 2, 2, 5, 1, 10, True, 0)
        depth, res, aniso, epermH, epermV, mpermH, mpermV, isfullspace = model
        frequency = utils.check_frequency(1, res, aniso, epermH, epermV,
                                          mpermH, mpermV, 0)
        freq, etaH, etaV, zetaH, zetaV = frequency
        src = [0, 0, 0]
        src, nsrc = utils.check_dipole(src, 'src', 0)
        ab, msrc, mrec = utils.check_ab(ab, 0)
        ht, htarg = utils.check_hankel('fht', None, 0)
        options = utils.check_opt(None, None, ht, htarg, 0)
        use_ne_eval, loop_freq, loop_off = options
        xdirect = False  # Important, as we want to comp. wavenumber-frequency!
        rec = [np.arange(1, 11) * 500, np.zeros(10), 300]
        rec, nrec = utils.check_dipole(rec, 'rec', 0)
        off, angle = utils.get_off_ang(src, rec, nsrc, nrec, 0)
        lsrc, zsrc = utils.get_layer_nr(src, depth)
        lrec, zrec = utils.get_layer_nr(rec, depth)
        fhtfilt = htarg[0]
        pts_per_dec = htarg[1]

        # # # 0. No Spline # # #

        # fht calculation
        lambd = fhtfilt.base / off[:, None]
        PJ = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                               zetaH, zetaV, lambd, ab, xdirect, msrc, mrec,
                               use_ne_eval)
        factAng = kernel.angle_factor(angle, ab, msrc, mrec)

        # dlf calculation
        fEM0 = transform.dlf(PJ,
                             lambd,
                             off,
                             fhtfilt,
                             0,
                             factAng=factAng,
                             ab=ab)

        # Analytical frequency-domain solution
        freq1 = kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH,
                                 zetaV, ab, msrc, mrec)
        # Compare
        assert_allclose(np.squeeze(fEM0), np.squeeze(freq1))

        # # # 1. Spline; One angle # # #
        options = utils.check_opt('spline', None, ht, htarg, 0)
        use_ne_eval, loop_freq, loop_off = options

        # fht calculation
        lambd, _ = transform.get_spline_values(fhtfilt, off, pts_per_dec)
        PJ1 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec,
                                use_ne_eval)

        # dlf calculation
        fEM1 = transform.dlf(PJ1,
                             lambd,
                             off,
                             fhtfilt,
                             pts_per_dec,
                             factAng=factAng,
                             ab=ab)

        # Compare
        assert_allclose(np.squeeze(fEM1), np.squeeze(freq1), rtol=1e-4)

        # # # 2.a Lagged; One angle # # #
        rec = [np.arange(1, 11) * 500, np.arange(-5, 5) * 0, 300]
        rec, nrec = utils.check_dipole(rec, 'rec', 0)
        off, angle = utils.get_off_ang(src, rec, nsrc, nrec, 0)

        # fht calculation
        lambd, _ = transform.get_spline_values(fhtfilt, off, -1)
        PJ2 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec,
                                use_ne_eval)
        factAng = kernel.angle_factor(angle, ab, msrc, mrec)

        # dlf calculation
        fEM2 = transform.dlf(PJ2,
                             lambd,
                             off,
                             fhtfilt,
                             -1,
                             factAng=factAng,
                             ab=ab)

        # Analytical frequency-domain solution
        freq2 = kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH,
                                 zetaV, ab, msrc, mrec)
        # Compare
        assert_allclose(np.squeeze(fEM2), np.squeeze(freq2), rtol=1e-4)

        # # # 2.b Lagged; Multi angle # # #
        rec = [np.arange(1, 11) * 500, np.arange(-5, 5) * 200, 300]
        rec, nrec = utils.check_dipole(rec, 'rec', 0)
        off, angle = utils.get_off_ang(src, rec, nsrc, nrec, 0)

        # fht calculation
        lambd, _ = transform.get_spline_values(fhtfilt, off, -1)
        PJ2 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec,
                                use_ne_eval)
        factAng = kernel.angle_factor(angle, ab, msrc, mrec)

        # dlf calculation
        fEM2 = transform.dlf(PJ2,
                             lambd,
                             off,
                             fhtfilt,
                             -1,
                             factAng=factAng,
                             ab=ab)

        # Analytical frequency-domain solution
        freq2 = kernel.fullspace(off, angle, zsrc, zrec, etaH, etaV, zetaH,
                                 zetaV, ab, msrc, mrec)
        # Compare
        assert_allclose(np.squeeze(fEM2), np.squeeze(freq2), rtol=1e-4)

        # # # 3. Spline; Multi angle # # #

        lambd, _ = transform.get_spline_values(fhtfilt, off, 10)
        # fht calculation
        PJ3 = kernel.wavenumber(zsrc, zrec, lsrc, lrec, depth, etaH, etaV,
                                zetaH, zetaV, lambd, ab, xdirect, msrc, mrec,
                                use_ne_eval)

        # dlf calculation
        fEM3 = transform.dlf(PJ3,
                             lambd,
                             off,
                             fhtfilt,
                             10,
                             factAng=factAng,
                             ab=ab)

        # Compare
        assert_allclose(np.squeeze(fEM3), np.squeeze(freq2), rtol=1e-3)
Пример #4
0
    def forward(self, m, output_type='response'):
        """
            Return Bz or dBzdt
        """

        self.model = m

        n_frequency = self.survey.n_frequency
        flag = self.survey.field_type
        n_layer = self.survey.n_layer
        depth = self.survey.depth
        I = self.survey.I
        n_filter = self.n_filter

        # Get lambd and offset, will depend on pts_per_dec
        if self.survey.src_type == "VMD":
            r = self.survey.offset
        else:
            # a is the radius of the loop
            r = self.survey.a * np.ones(n_frequency)

        # Use function from empymod
        # size of lambd is (n_frequency x n_filter)
        lambd = np.empty([self.survey.frequency.size, n_filter], order='F')
        lambd[:, :], _ = get_spline_values(self.fhtfilt, r, self.hankel_pts_per_dec)

        # lambd, _ = get_spline_values(self.fhtfilt, r, self.hankel_pts_per_dec)
        
        # TODO: potentially store
        f = np.empty([self.survey.frequency.size, n_filter], order='F')
        f[:,:] = np.tile(self.survey.frequency.reshape([-1, 1]), (1, n_filter))
        # h is an inversion parameter
        if self.hMap is not None:
            h = self.h
        else:
            h = self.survey.h

        z = h + self.survey.dz

        chi = self.chi

        if np.isscalar(self.chi):
            chi = np.ones_like(self.sigma) * self.chi

        # TODO: potentially store
        sig = self.sigma_cole()

        if output_type == 'response':
            # for simulation
            if self.survey.src_type == 'VMD':
                hz = self.hz_kernel_vertical_magnetic_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z,
                    flag, output_type=output_type
                )

                # kernels for each bessel function
                # (j0, j1, j2)
                PJ = (hz, None, None)  # PJ0

            elif self.survey.src_type == 'CircularLoop':
                hz = self.hz_kernel_circular_loop(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )

                # kernels for each bessel function
                # (j0, j1, j2)
                PJ = (None, hz, None)  # PJ1

            # TODO: This has not implemented yet!
            elif self.survey.src_type == "piecewise_line":
                # Need to compute y
                hz = self.hz_kernel_horizontal_electric_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )
                # kernels for each bessel function
                # (j0, j1, j2)
                PJ = (None, hz, None)  # PJ1

            else:
                raise Exception("Src options are only VMD or CircularLoop!!")

        elif output_type == 'sensitivity_sigma':

            # for simulation
            if self.survey.src_type == 'VMD':
                hz = self.hz_kernel_vertical_magnetic_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z,
                    flag, output_type=output_type
                )

                PJ = (hz, None, None)  # PJ0

            elif self.survey.src_type == 'CircularLoop':

                hz = self.hz_kernel_circular_loop(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )

                PJ = (None, hz, None)  # PJ1

            else:
                raise Exception("Src options are only VMD or CircularLoop!!")

            r = np.tile(r, (n_layer, 1))

        elif output_type == 'sensitivity_height':

            # for simulation
            if self.survey.src_type == 'VMD':
                hz = self.hz_kernel_vertical_magnetic_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z,
                    flag, output_type=output_type
                )

                PJ = (hz, None, None)  # PJ0

            elif self.survey.src_type == 'CircularLoop':

                hz = self.hz_kernel_circular_loop(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )

                PJ = (None, hz, None)  # PJ1

            else:
                raise Exception("Src options are only VMD or CircularLoop!!")

        # Carry out Hankel DLF
        # ab=66 => 33 (vertical magnetic src and rec)
        # For response
        # HzFHT size = (n_frequency,)
        # For sensitivity
        # HzFHT size = (n_layer, n_frequency)

        HzFHT = dlf(PJ, lambd, r, self.fhtfilt, self.hankel_pts_per_dec,
                    factAng=None, ab=33)

        if output_type == "sensitivity_sigma":
            return HzFHT.T

        return HzFHT
Пример #5
0
    def forward(self, m, output_type='response'):
        """
            Return Bz or dBzdt
        """

        self.model = m

        n_frequency = self.survey.n_frequency
        flag = self.survey.field_type
        n_layer = self.survey.n_layer
        depth = self.survey.depth
        I = self.survey.I
        n_filter = self.n_filter

        # Get lambd and offset, will depend on pts_per_dec
        if self.survey.src_type == "VMD":
            r = self.survey.offset
        else:
            # a is the radius of the loop
            r = self.survey.a * np.ones(n_frequency)

        # Use function from empymod
        # size of lambd is (n_frequency x n_filter)
        lambd = np.empty([self.survey.frequency.size, n_filter], order='F')
        lambd[:, :], _ = get_spline_values(
            self.fhtfilt, r, self.hankel_pts_per_dec
        )

        # TODO: potentially store
        f = np.empty([self.survey.frequency.size, n_filter], order='F')
        f[:, :] = np.tile(
            self.survey.frequency.reshape([-1, 1]), (1, n_filter)
        )
        # h is an inversion parameter
        if self.hMap is not None:
            h = self.h
        else:
            h = self.survey.h

        z = h + self.survey.dz

        chi = self.chi

        if np.isscalar(self.chi):
            chi = np.ones_like(self.sigma) * self.chi

        # TODO: potentially store
        sig = self.sigma_cole()

        if output_type == 'response':
            # for simulation
            if self.survey.src_type == 'VMD':
                hz = self.hz_kernel_vertical_magnetic_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z,
                    flag, output_type=output_type
                )

                # kernels for each bessel function
                # (j0, j1, j2)
                PJ = (hz, None, None)  # PJ0

            elif self.survey.src_type == 'CircularLoop':
                hz = self.hz_kernel_circular_loop(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )

                # kernels for each bessel function
                # (j0, j1, j2)
                PJ = (None, hz, None)  # PJ1

            # TODO: This has not implemented yet!
            elif self.survey.src_type == "piecewise_line":
                # Need to compute y
                hz = self.hz_kernel_horizontal_electric_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )
                # kernels for each bessel function
                # (j0, j1, j2)
                PJ = (None, hz, None)  # PJ1

            else:
                raise Exception("Src options are only VMD or CircularLoop!!")

        elif output_type == 'sensitivity_sigma':

            # for simulation
            if self.survey.src_type == 'VMD':
                hz = self.hz_kernel_vertical_magnetic_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z,
                    flag, output_type=output_type
                )

                PJ = (hz, None, None)  # PJ0

            elif self.survey.src_type == 'CircularLoop':

                hz = self.hz_kernel_circular_loop(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )

                PJ = (None, hz, None)  # PJ1

            else:
                raise Exception("Src options are only VMD or CircularLoop!!")

            r = np.tile(r, (n_layer, 1))

        elif output_type == 'sensitivity_height':

            # for simulation
            if self.survey.src_type == 'VMD':
                hz = self.hz_kernel_vertical_magnetic_dipole(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z,
                    flag, output_type=output_type
                )

                PJ = (hz, None, None)  # PJ0

            elif self.survey.src_type == 'CircularLoop':

                hz = self.hz_kernel_circular_loop(
                    lambd, f, n_layer,
                    sig, chi, depth, h, z, I, r,
                    flag, output_type=output_type
                )

                PJ = (None, hz, None)  # PJ1

            else:
                raise Exception("Src options are only VMD or CircularLoop!!")

        # Carry out Hankel DLF
        # ab=66 => 33 (vertical magnetic src and rec)
        # For response
        # HzFHT size = (n_frequency,)
        # For sensitivity
        # HzFHT size = (n_layer, n_frequency)

        HzFHT = dlf(PJ, lambd, r, self.fhtfilt, self.hankel_pts_per_dec,
                    factAng=None, ab=33)

        if output_type == "sensitivity_sigma":
            return HzFHT.T

        return HzFHT
Пример #6
0
 def time_dlf(self, data, size, htype):
     transform.dlf(**data[size][htype])
Пример #7
0
    def setup_cache(self):
        """setup_cache is not parametrized, so we do it manually. """

        data = {}
        for size in self.params[0]:  # size

            data[size] = {}

            # One big, one small model
            if size == 'Small':  # Small; Total size: 5*1*1*1 = 5
                x = np.array([500., 1000.])
            else:       # Big; Total size: 5*100*100*201 = 10'050'000
                x = np.arange(1, 101)*200.

            # Define model parameters
            freq = np.array([1])
            src = [0, 0, 250]
            rec = [x, np.zeros(x.shape), 300]
            depth = np.array([-np.infty, 0, 300, 2000, 2100])
            res = np.array([2e14, .3, 1, 50, 1])
            ab = 11
            xdirect = False
            verb = 0

            if not VERSION2:
                use_ne_eval = False

            # Checks (since DLF exists the `utils`-checks haven't changed, so
            # we just use them here.
            model = utils.check_model(depth, res, None, None, None, None, None,
                                      xdirect, verb)
            depth, res, aniso, epermH, epermV, mpermH, mpermV, _ = model
            frequency = utils.check_frequency(freq, res, aniso, epermH, epermV,
                                              mpermH, mpermV, verb)
            freq, etaH, etaV, zetaH, zetaV = frequency
            ab, msrc, mrec = utils.check_ab(ab, verb)
            src, nsrc = utils.check_dipole(src, 'src', verb)
            rec, nrec = utils.check_dipole(rec, 'rec', verb)
            off, angle = utils.get_off_ang(src, rec, nsrc, nrec, verb)
            lsrc, zsrc = utils.get_layer_nr(src, depth)
            lrec, zrec = utils.get_layer_nr(rec, depth)

            for htype in self.params[1]:  # htype

                # pts_per_dec depending on htype
                if htype == 'Standard':
                    pts_per_dec = 0
                elif htype == 'Lagged':
                    pts_per_dec = -1
                else:
                    pts_per_dec = 10

                # Compute kernels for dlf
                if VERSION2:
                    # HT arguments
                    _, fhtarg = utils.check_hankel(
                            'dlf',
                            {'dlf': 'key_201_2009',
                             'pts_per_dec': pts_per_dec},
                            0)

                    inp = (fhtarg['dlf'], off, fhtarg['pts_per_dec'])
                    lambd, _ = transform.get_dlf_points(*inp)
                else:
                    # HT arguments
                    _, fhtarg = utils.check_hankel(
                            'fht', ['key_201_2009', pts_per_dec], 0)

                    inp = (fhtarg[0], off, fhtarg[1])
                    lambd, _ = transform.get_spline_values(*inp)

                if VERSION2:
                    inp = (zsrc, zrec, lsrc, lrec, depth, etaH, etaV, zetaH,
                           zetaV, lambd, ab, xdirect, msrc, mrec)
                else:
                    inp = (zsrc, zrec, lsrc, lrec, depth, etaH,
                           etaV, zetaH, zetaV, lambd, ab, xdirect,
                           msrc, mrec, use_ne_eval)
                PJ = kernel.wavenumber(*inp)

                factAng = kernel.angle_factor(angle, ab, msrc, mrec)

                # Signature changed at commit a15af07 (20/05/2018; before
                # v1.6.2)
                try:
                    dlf = {'signal': PJ, 'points': lambd, 'out_pts': off,
                           'ab': ab}
                    if VERSION2:
                        dlf['ang_fact'] = factAng
                        dlf['filt'] = fhtarg['dlf']
                        dlf['pts_per_dec'] = fhtarg['pts_per_dec']
                    else:
                        dlf['factAng'] = factAng
                        dlf['filt'] = fhtarg[0]
                        dlf['pts_per_dec'] = fhtarg[1]
                    transform.dlf(**dlf)
                except VariableCatch:
                    dlf = {'signal': PJ, 'points': lambd, 'out_pts': off,
                           'targ': fhtarg, 'factAng': factAng}

                data[size][htype] = dlf

        return data