def test_loader_errors(self): # check that images with no dark images raise ValueError with self.assertRaises(ValueError): images = {'temporal': {0: {0.1: ""}}, 'spatial': {0: {0.1: ""}}} l = LoadImageData(images) # check that one image for temporal instead of 2 raise valueerror with self.assertRaises(ValueError): images = {'temporal': {0: {0.0: ""}}, 'spatial': {0: {0.0: ""}}} l = LoadImageData(images) # Check that an image that does not exist raise an IOError with self.assertRaises(IOError): images = {'temporal': {0: {0.0: ["."], 0.1: ["."]}}, 'spatial': {0: {0.0: ["."], 0.1: ["."]}}} l = LoadImageData(images)
def _init(self): # Create dataset to load dataset = DatasetGenerator(height=self._height, width=self._width, bit_depth=self._bit_depth, L=self._L, steps=self._steps) descriptor_path = dataset.descriptor_path # create the parser parser = ParseEmvaDescriptorFile(descriptor_path) # create loader loader = LoadImageData(parser.images) return dataset, parser, loader
def _init(pixel_area=0, **kwargs): # create dataset dataset = DatasetGenerator(**kwargs) # parse dataset parser = ParseEmvaDescriptorFile(dataset.descriptor_path) # load image data loader = LoadImageData(parser.images) # create data data = Data1288(loader.data) # Make results object px = pixel_area if pixel_area == 0: px = dataset.cam.pixel_area results = Results1288(data.data, pixel_area=px) return dataset, parser, loader, data, results
def _init(self): # create dataset dataset = DatasetGenerator(height=self._height, width=self._width, bit_depth=self._bit_depth, L=self._L, steps=self._steps, radiance_min=self._radiance_min, exposure_max=self._exposure_max) # parse dataset parser = ParseEmvaDescriptorFile(dataset.descriptor_path) # load images loader = LoadImageData(parser.images) # create data data = Data1288(loader.data) return dataset, parser, loader, data
def __init__(self, fname): parser = ParseEmvaDescriptorFile(fname) imgs = LoadImageData(parser.images) dat = Data1288(imgs.data) self._results = Results1288(dat.data)