Пример #1
0
def eval_local_slot_filling(train_path, test_path):
    """
    Evaluate accuracy of the local slot filling classifier.
    :param train_path: path to the training data points stored on disk.
    :param test_path: path to the test data points stored on disk.
    :return:
    """
    train_X, train_Y = data_utils.load_slot_filling_data(train_path)
    test_X, test_Y = data_utils.load_slot_filling_data(test_path)

    # Create model.
    model = classifiers.KNearestNeighborModel(FLAGS.num_nn_slot_filling,
                                              train_X, train_Y)
    model.eval(train_X, train_Y, verbose=True)
    model.eval(test_X, test_Y, verbose=False)
Пример #2
0
def demo(sess, model, FLAGS):
    """
    Simple command line decoding interface.
    """
    slot_filling_classifier = None
    if FLAGS.fill_argument_slots:
        # create slot filling classifier
        mapping_param_dir = os.path.join(FLAGS.model_dir,
                                         'train.mappings.X.Y.npz')
        train_X, train_Y = \
            data_utils.load_slot_filling_data(mapping_param_dir)
        slot_filling_classifier = classifiers.KNearestNeighborModel(
            FLAGS.num_nn_slot_filling, train_X, train_Y)
        print('Slot filling classifier parameters loaded.')

    # Decode from standard input.
    sys.stdout.write('> ')
    sys.stdout.flush()
    sentence = sys.stdin.readline()

    vocabs = data_utils.load_vocab(FLAGS)

    while sentence:
        batch_outputs, output_logits = translate_fun(
            sentence,
            sess,
            model,
            vocabs,
            FLAGS,
            slot_filling_classifier=slot_filling_classifier)
        if FLAGS.token_decoding_algorithm == 'greedy':
            tree, pred_cmd, outputs = batch_outputs[0]
            score = output_logits[0]
            print('{} ({})'.format(pred_cmd, score))
        elif FLAGS.token_decoding_algorithm == 'beam_search':
            if batch_outputs:
                top_k_predictions = batch_outputs[0]
                top_k_scores = output_logits[0]
                for j in xrange(min(FLAGS.beam_size, 10,
                                    len(batch_outputs[0]))):
                    if len(top_k_predictions) <= j:
                        break
                    top_k_pred_tree, top_k_pred_cmd = top_k_predictions[j]
                    print('Prediction {}: {} ({}) '.format(
                        j + 1, top_k_pred_cmd, top_k_scores[j]))
                print()
            else:
                print(APOLOGY_MSG)
        print('> ', end='')
        sys.stdout.flush()
        sentence = sys.stdin.readline()
Пример #3
0
FLAGS.tg_token_embedding_size = 400
FLAGS.tg_vocab_size = 3400

FLAGS.dataset = 'bash'
FLAGS.data_dir = os.path.join(learning_module_dir, "data", FLAGS.dataset)
FLAGS.model_root_dir = os.path.join(learning_module_dir, "model", "seq2seq")

# create tensorflow session
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                  log_device_placement=FLAGS.log_device_placement))

# create model and load nerual model parameters.
model = trans.create_model(sess, forward_only=True, buckets=[(30, 40)])
vocabs = data_utils.load_vocab(FLAGS)

if FLAGS.fill_argument_slots:
    # create slot filling classifier
    model_param_dir = os.path.join(FLAGS.model_dir, 'train.mappings.X.Y.npz')
    train_X, train_Y = data_utils.load_slot_filling_data(model_param_dir)
    slot_filling_classifier = classifiers.KNearestNeighborModel(
        FLAGS.num_nn_slot_filling, train_X, train_Y)
    print('Slot filling classifier parameters loaded.')
else:
    slot_filling_classifier = None

def translate_fun(sentence, slot_filling_classifier=slot_filling_classifier):
    print('start running translation model')
    print(sentence)
    return decode_tools.translate_fun(sentence, sess, model, vocabs, FLAGS,
                                      slot_filling_classifier)
Пример #4
0
def eval_slot_filling(dataset):
    """
    Evaluate global slot filling algorithm F1 using ground truth templates.
    """
    vocabs = data_utils.load_vocab(FLAGS)
    rev_tg_vocab = vocabs.rev_tg_vocab
    rev_tg_full_vocab = vocabs.rev_tg_full_vocab

    with tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement)) as sess:
        # Create model.
        FLAGS.beam_size = 1
        FLAGS.token_decoding_algorithm = 'beam_search'
        FLAGS.force_reading_input = True
        model = graph_utils.create_model(sess,
                                         FLAGS,
                                         Seq2SeqModel,
                                         buckets=_buckets,
                                         forward_only=True)

        model_param_dir = os.path.join(FLAGS.model_dir,
                                       'train.mappings.X.Y.npz')
        train_X, train_Y = data_utils.load_slot_filling_data(model_param_dir)
        slot_filling_classifier = classifiers.KNearestNeighborModel(
            FLAGS.num_nn_slot_filling, train_X, train_Y)
        print('Slot filling classifier parameters loaded.')

        num_correct_argument = 0.0
        num_argument = 0.0
        num_correct_align = 0.0
        num_predict_align = 0.0
        num_gt_align = 0.0
        for bucket_id in xrange(len(_buckets)):
            for data_id in xrange(len(dataset[bucket_id])):
                dp = dataset[bucket_id][data_id]
                gt_mappings = [tuple(m) for m in dp.mappings]
                outputs = dp.tg_ids[1:-1]
                full_outputs = dp.tg_full_ids[1:-1]
                if gt_mappings:
                    _, entities = tokenizer.ner_tokenizer(dp.sc_txt)
                    nl_fillers = entities[0]
                    encoder_inputs = [dp.sc_ids]
                    encoder_full_inputs = [dp.sc_copy_ids] \
                        if FLAGS.use_copy else [dp.sc_full_ids]
                    decoder_inputs = [dp.tg_ids]
                    decoder_full_inputs = [dp.tg_full_ids] \
                        if FLAGS.use_copy else [dp.tg_copy_ids]
                    pointer_targets = [dp.pointer_targets] \
                        if FLAGS.use_copy else None
                    formatted_example = model.format_example(
                        [encoder_inputs, encoder_full_inputs],
                        [decoder_inputs, decoder_full_inputs],
                        pointer_targets=pointer_targets,
                        bucket_id=bucket_id)
                    model_outputs = model.step(sess,
                                               formatted_example,
                                               bucket_id,
                                               forward_only=True)
                    encoder_outputs = model_outputs.encoder_hidden_states
                    decoder_outputs = model_outputs.decoder_hidden_states
                    print(decoder_outputs[:, 0, :])

                    cm_slots = {}
                    output_tokens = []
                    for ii in xrange(len(outputs)):
                        output = outputs[ii]
                        if output < len(rev_tg_vocab):
                            token = rev_tg_vocab[output]
                            if "@@" in token:
                                token = token.split("@@")[-1]
                            output_tokens.append(token)
                            if token.startswith('__ARG__'):
                                token = token[len('__ARG__'):]
                            if nl_fillers is not None and \
                                    token in constants._ENTITIES:
                                if ii > 0 and slot_filling.is_min_flag(
                                        rev_tg_vocab[outputs[ii - 1]]):
                                    token_type = 'Timespan'
                                else:
                                    token_type = token
                                cm_slots[ii] = (token, token_type)
                        else:
                            output_tokens.append(data_utils._UNK)
                    if FLAGS.use_copy:
                        P = pointer_targets[0][0] > 0
                        pointers = model_outputs.pointers[0]
                        pointers = np.multiply(
                            np.sum(P.astype(float)[:pointers.shape[0],
                                                   -pointers.shape[1]:],
                                   1,
                                   keepdims=True), pointers)
                    else:
                        pointers = None
                    tree, _, mappings = slot_filling.stable_slot_filling(
                        output_tokens,
                        nl_fillers,
                        cm_slots,
                        pointers,
                        encoder_outputs[0],
                        decoder_outputs[0],
                        slot_filling_classifier,
                        verbose=True)

                    if mappings is not None:
                        # print(gt_mappings)
                        for mapping in mappings:
                            # print(mapping)
                            if mapping in gt_mappings:
                                num_correct_align += 1
                        num_predict_align += len(mappings)
                    num_gt_align += len(gt_mappings)

                    tokens = data_tools.ast2tokens(tree)
                    if not tokens:
                        continue
                    for ii in xrange(len(outputs)):
                        output = outputs[ii]
                        token = rev_tg_vocab[output]
                        if token.startswith('__ARG__'):
                            token = token[len('__ARG__'):]
                        if token in constants._ENTITIES:
                            argument = rev_tg_full_vocab[full_outputs[ii]]
                            if argument.startswith('__ARG__'):
                                argument = argument[len('__ARG__'):]
                            pred = tokens[ii]
                            if constants.remove_quotation(argument) == \
                                    constants.remove_quotation(pred):
                                num_correct_argument += 1
                            num_argument += 1
            if gt_mappings:
                break
        precision = num_correct_align / num_predict_align
        recall = num_correct_align / num_gt_align
        print("Argument Alignment Precision: {}".format(precision))
        print("Argument Alignment Recall: {}".format(recall))
        print("Argument Alignment F1: {}".format(2 * precision * recall /
                                                 (precision + recall)))

        print("Argument filling accuracy: {}".format(num_correct_argument /
                                                     num_argument))
Пример #5
0
def decode_set(sess, model, dataset, top_k, FLAGS, verbose=True):
    """
    Compute top-k predictions on the dev/test dataset and write the predictions
    to disk.

    :param sess: A TensorFlow session.
    :param model: Prediction model object.
    :param top_k: Number of top predictions to compute.
    :param FLAGS: Training/testing hyperparameter settings.
    :param verbose: If set, also print decoding results to screen.
    """
    nl2bash = FLAGS.dataset.startswith('bash') and not FLAGS.explain

    tokenizer_selector = 'cm' if FLAGS.explain else 'nl'
    grouped_dataset = data_utils.group_data(
        dataset,
        use_bucket=model.buckets,
        use_temp=FLAGS.normalized,
        tokenizer_selector=tokenizer_selector)
    vocabs = data_utils.load_vocab(FLAGS)
    rev_sc_vocab = vocabs.rev_sc_vocab

    if FLAGS.fill_argument_slots:
        # create slot filling classifier
        mapping_param_dir = os.path.join(FLAGS.model_dir,
                                         'train.mappings.X.Y.npz')
        train_X, train_Y = data_utils.load_slot_filling_data(mapping_param_dir)
        slot_filling_classifier = classifiers.KNearestNeighborModel(
            FLAGS.num_nn_slot_filling, train_X, train_Y)
        print('Slot filling classifier parameters loaded.')
    else:
        slot_filling_classifier = None

    ts = datetime.datetime.fromtimestamp(
        time.time()).strftime('%Y-%m-%d-%H%M%S')
    pred_file_path = os.path.join(
        model.model_dir, 'predictions.{}.{}'.format(model.decode_sig, ts))
    pred_file = open(pred_file_path, 'w')
    for example_id in xrange(len(grouped_dataset)):
        key, data_group = grouped_dataset[example_id]

        sc_txt = data_group[0].sc_txt
        sc_temp = ' '.join([rev_sc_vocab[i] for i in data_group[0].sc_ids])
        if verbose:
            print('Example {}:'.format(example_id))
            print('Original Source: {}'.format(sc_txt))
            print('Source: {}'.format(sc_temp))
            for j in xrange(len(data_group)):
                print('GT Target {}: {}'.format(j + 1, data_group[j].tg_txt))

        batch_outputs, output_logits = translate_fun(
            data_group,
            sess,
            model,
            vocabs,
            FLAGS,
            slot_filling_classifier=slot_filling_classifier)
        if FLAGS.tg_char:
            batch_outputs, batch_char_outputs = batch_outputs

        if batch_outputs:
            if FLAGS.token_decoding_algorithm == 'greedy':
                tree, pred_cmd = batch_outputs[0]
                if nl2bash:
                    pred_cmd = data_tools.ast2command(tree,
                                                      loose_constraints=True)
                score = output_logits[0]
                if verbose:
                    print('Prediction: {} ({})'.format(pred_cmd, score))
                pred_file.write('{}\n'.format(pred_cmd))
            elif FLAGS.token_decoding_algorithm == 'beam_search':
                top_k_predictions = batch_outputs[0]
                if FLAGS.tg_char:
                    top_k_char_predictions = batch_char_outputs[0]
                top_k_scores = output_logits[0]
                num_preds = min(FLAGS.beam_size, top_k, len(top_k_predictions))
                for j in xrange(num_preds):
                    top_k_pred_tree, top_k_pred_cmd = top_k_predictions[j]
                    if nl2bash:
                        pred_cmd = data_tools.ast2command(
                            top_k_pred_tree, loose_constraints=True)
                    else:
                        pred_cmd = top_k_pred_cmd
                    pred_file.write('{}|||'.format(pred_cmd))
                    if verbose:
                        print('Prediction {}: {} ({})'.format(
                            j + 1, pred_cmd, top_k_scores[j]))
                        if FLAGS.tg_char:
                            print('Character-based prediction {}: {}'.format(
                                j + 1, top_k_char_predictions[j]))
                pred_file.write('\n')
        else:
            print(APOLOGY_MSG)
            pred_file.write('\n')
    pred_file.close()
    shutil.copyfile(
        pred_file_path,
        os.path.join(FLAGS.model_dir,
                     'predictions.{}.latest'.format(model.decode_sig)))