Пример #1
0
    def __init__(self, args):
        if args.se_loss:
            args.checkname = args.checkname + "_se"

        self.args = args
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            transform.Normalize([.485, .456, .406], [.229, .224, .225])])
        # dataset
        data_kwargs = {'transform': input_transform, 'base_size': args.base_size,
                       'crop_size': args.crop_size}
        trainset = get_segmentation_dataset(args.dataset, split='train', mode='train',
                                           **data_kwargs)
        testset = get_segmentation_dataset(args.dataset, split='val', mode ='val',
                                           **data_kwargs)
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': False} \
            if args.cuda else {}
        self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size,
                                           drop_last=True, shuffle=True, **kwargs)
        self.valloader = data.DataLoader(testset, batch_size=args.batch_size,
                                         drop_last=False, shuffle=False, **kwargs)
        self.nclass = trainset.num_class
        # model
        model = get_segmentation_model(args.model, dataset=args.dataset,
                                       backbone = args.backbone, aux = args.aux,
                                       se_loss = args.se_loss, norm_layer = BatchNorm2d,
                                       base_size=args.base_size, crop_size=args.crop_size)
        print(model)

        # count parameter number
        pytorch_total_params = sum(p.numel() for p in model.parameters())
        print("Total number of parameters: %d"%pytorch_total_params)

        # optimizer using different LR
        params_list = [{'params': model.pretrained.parameters(), 'lr': args.lr},]
        if hasattr(model, 'head'):
            if args.diflr:
                params_list.append({'params': model.head.parameters(), 'lr': args.lr*10})
            else:
                params_list.append({'params': model.head.parameters(), 'lr': args.lr})
        if hasattr(model, 'auxlayer'):
            if args.diflr:
                params_list.append({'params': model.auxlayer.parameters(), 'lr': args.lr*10})
            else:
                params_list.append({'params': model.auxlayer.parameters(), 'lr': args.lr})

        optimizer = torch.optim.SGD(params_list,
                    lr=args.lr,
                    momentum=args.momentum,
                    weight_decay=args.weight_decay)

        #optimizer = torch.optim.ASGD(params_list,
        #                            lr=args.lr,
        #                            weight_decay=args.weight_decay)

        # criterions
        self.criterion = SegmentationLosses(se_loss=args.se_loss, aux=args.aux,
                                            nclass=self.nclass)
        self.model, self.optimizer = model, optimizer
        # using cuda
        if args.cuda:
            self.model = DataParallelModel(self.model).cuda()
            self.criterion = DataParallelCriterion(self.criterion).cuda()
        # resuming checkpoint
        if args.resume is not None and len(args.resume)>0:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                # load weights for the same model
                # self.model.module.load_state_dict(checkpoint['state_dict'])



                # model and checkpoint have different strucutures
                pretrained_dict = checkpoint['state_dict']
                model_dict = self.model.module.state_dict()

                for name, param in pretrained_dict.items():
                    if name not in model_dict:
                        continue
                    if isinstance(param, Parameter):
                        # backwards compatibility for serialized parameters
                        param = param.data
                    model_dict[name].copy_(param)

            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))

        # clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0

        # lr scheduler
        self.scheduler = utils.LR_Scheduler(args.lr_scheduler, args.lr,
                                            args.epochs, len(self.trainloader),lr_step=args.lr_step)
        self.best_pred = 0.0
Пример #2
0
 def __init__(self, args):
     self.args = args
     # data transforms
     input_transform = transform.Compose([
         transform.ToTensor(),
         transform.Normalize([.485, .456, .406], [.229, .224, .225])
     ])
     # dataset
     data_kwargs = {
         'transform': input_transform,
         'base_size': args.base_size,
         'crop_size': args.crop_size
     }
     trainset = get_segmentation_dataset(args.dataset,
                                         split=args.train_split,
                                         mode='train',
                                         **data_kwargs)
     testset = get_segmentation_dataset(args.dataset,
                                        split='val',
                                        mode='val',
                                        **data_kwargs)
     # dataloader
     kwargs = {'num_workers': args.workers, 'pin_memory': True} \
         if args.cuda else {}
     self.trainloader = data.DataLoader(trainset,
                                        batch_size=args.batch_size,
                                        drop_last=True,
                                        shuffle=True,
                                        **kwargs)
     self.valloader = data.DataLoader(testset,
                                      batch_size=args.batch_size,
                                      drop_last=False,
                                      shuffle=False,
                                      **kwargs)
     self.nclass = trainset.num_class
     # model
     model = get_segmentation_model(
         args.model,
         dataset=args.dataset,
         backbone=args.backbone,
         dilated=args.dilated,
         lateral=args.lateral,
         jpu=args.jpu,
         aux=args.aux,
         se_loss=args.se_loss,
         norm_layer=torch.nn.BatchNorm2d,  ## BatchNorm2d
         base_size=args.base_size,
         crop_size=args.crop_size)
     print(model)
     # optimizer using different LR
     params_list = [
         {
             'params': model.pretrained.parameters(),
             'lr': args.lr
         },
     ]
     if hasattr(model, 'jpu'):
         params_list.append({
             'params': model.jpu.parameters(),
             'lr': args.lr * 10
         })
     if hasattr(model, 'head'):
         params_list.append({
             'params': model.head.parameters(),
             'lr': args.lr * 10
         })
     if hasattr(model, 'auxlayer'):
         params_list.append({
             'params': model.auxlayer.parameters(),
             'lr': args.lr * 10
         })
     optimizer = torch.optim.SGD(params_list,
                                 lr=args.lr,
                                 momentum=args.momentum,
                                 weight_decay=args.weight_decay)
     # criterions
     self.criterion = SegmentationLosses(se_loss=args.se_loss,
                                         aux=args.aux,
                                         nclass=self.nclass,
                                         se_weight=args.se_weight,
                                         aux_weight=args.aux_weight)
     self.model, self.optimizer = model, optimizer
     # using cuda
     if args.cuda:
         self.model = DataParallelModel(self.model).cuda()
         self.criterion = DataParallelCriterion(self.criterion).cuda()
     # resuming checkpoint
     if args.resume is not None:
         if not os.path.isfile(args.resume):
             raise RuntimeError("=> no checkpoint found at '{}'".format(
                 args.resume))
         checkpoint = torch.load(args.resume)
         args.start_epoch = checkpoint['epoch']
         if args.cuda:
             self.model.module.load_state_dict(checkpoint['state_dict'])
         else:
             self.model.load_state_dict(checkpoint['state_dict'])
         if not args.ft:
             self.optimizer.load_state_dict(checkpoint['optimizer'])
         self.best_pred = checkpoint['best_pred']
         print("=> loaded checkpoint '{}' (epoch {})".format(
             args.resume, checkpoint['epoch']))
     # clear start epoch if fine-tuning
     if args.ft:
         args.start_epoch = 0
     # lr scheduler
     self.scheduler = utils.LR_Scheduler(args.lr_scheduler, args.lr,
                                         args.epochs, len(self.trainloader))
     self.best_pred = 0.0
Пример #3
0
    def __init__(self, args):
        self.args = args
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            transform.Normalize([.485, .456, .406], [.229, .224, .225])
        ])
        # dataset
        data_kwargs = {
            'transform': input_transform,
            'base_size': args.base_size,
            'crop_size': args.crop_size
        }
        trainset = get_dataset(args.dataset,
                               split=args.train_split,
                               mode='train',
                               **data_kwargs)
        testset = get_dataset(args.dataset,
                              split='val',
                              mode='val',
                              **data_kwargs)

        self.train_sampler = torch.utils.data.distributed.DistributedSampler(
            trainset)
        self.val_sampler = torch.utils.data.distributed.DistributedSampler(
            testset)
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True} \
            if args.cuda else {}
        #self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size,
        #                                   drop_last=True, shuffle=True, **kwargs)
        #collate_fn=test_batchify_fn,
        self.trainloader = data.DataLoader(trainset,
                                           batch_size=args.batch_size //
                                           args.world_size,
                                           drop_last=True,
                                           shuffle=False,
                                           sampler=self.train_sampler,
                                           **kwargs)
        #self.valloader = data.DataLoader(testset, batch_size=args.batch_size,
        self.valloader = data.DataLoader(testset,
                                         batch_size=args.test_batch_size //
                                         args.world_size,
                                         drop_last=False,
                                         shuffle=False,
                                         sampler=self.val_sampler,
                                         **kwargs)
        self.nclass = trainset.num_class
        #Norm_method = nn.SyncBatchNorm
        #Norm_method = nn.BatchNorm2d(momentum=0.01)
        Norm_method = nn.BatchNorm2d
        # model
        model = get_segmentation_model(args.model,
                                       dataset=args.dataset,
                                       backbone=args.backbone,
                                       aux=args.aux,
                                       multi_grid=args.multi_grid,
                                       se_loss=args.se_loss,
                                       norm_layer=Norm_method,
                                       lateral=args.lateral,
                                       root=args.backbone_path,
                                       base_size=args.base_size,
                                       crop_size=args.crop_size)
        if self.args.rank == 0:
            print(model)

        # optimizer using different LR
        params_list = [
            {
                'params': model.pretrained.parameters(),
                'lr': args.lr
            },
        ]
        if hasattr(model, 'head'):
            params_list.append({
                'params': model.head.parameters(),
                'lr': args.lr * 10
            })
        if hasattr(model, 'auxlayer'):
            params_list.append({
                'params': model.auxlayer.parameters(),
                'lr': args.lr * 10
            })
        optimizer = torch.optim.SGD(params_list,
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
        self.optimizer = optimizer

        #self.model = model
        # criterions
        self.criterion = SegmentationLosses(se_loss=args.se_loss,
                                            aux=args.aux,
                                            nclass=self.nclass,
                                            se_weight=args.se_weight,
                                            aux_weight=args.aux_weight)

        device = torch.device('cuda:{}'.format(args.local_rank))

        self.device = device
        # using cuda
        if args.cuda:
            #self.model = DataParallelModel(self.model).cuda()
            #self.model = self.model.cuda()
            sync_bn_model = FullModel(model, self.criterion)
            #self.model.cuda()
            #broadcast_params(self.model)
            #num_gpus = torch.cuda.device_count()
            #local_rank = args.local_rank % num_gpus
            #local_rank = args.local_rank
            #process_group = torch.distributed.new_group([args.local_rank])
            #process_group = torch.distributed.new_group([args.rank])
            #sync_bn_model = torch.nn.utils.convert_sync_batchnorm(self.model, process_group)
            sync_bn_model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                sync_bn_model)
            sync_bn_model = sync_bn_model.to(device)
            #self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[args.local_rank], output_device=args.local_rank)
            self.model = torch.nn.parallel.DistributedDataParallel(
                sync_bn_model,
                device_ids=[args.local_rank],
                output_device=args.local_rank,
                find_unused_parameters=True)
            #self.criterion = DataParallelCriterion(self.criterion).cuda()
            #self.criterion = self.criterion.cuda()
            dist.barrier()

        # resuming checkpoint
        #if args.resume is not None and self.args.rank == 0:
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'".format(
                    args.resume))
            checkpoint = torch.load(args.resume)
            old_state_dict = checkpoint['state_dict']
            new_state_dict = dict()
            for k, v in old_state_dict.items():
                if k.startswith('module.'):
                    #new_state_dict[k[len('module.'):]] = old_state_dict[k]
                    new_state_dict[k] = old_state_dict[k]
                else:
                    new_state_dict[k] = old_state_dict[k]

            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                #self.model.module.load_state_dict(checkpoint['state_dict'])
                #self.model.load_state_dict(checkpoint['state_dict'])
                self.model.load_state_dict(new_state_dict)
            else:
                #self.model.load_state_dict(checkpoint['state_dict'])
                self.model.load_state_dict(new_state_dict)
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
                for state in self.optimizer.state.values():
                    for k, v in state.items():
                        if isinstance(v, torch.Tensor):
                            state[k] = v.cuda()

            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))

        # clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
        # lr scheduler
        self.scheduler = utils.LR_Scheduler(args.lr_scheduler,
                                            args.lr,
                                            args.epochs,
                                            len(self.trainloader),
                                            local_rank=self.args.rank)
        print('len(trainloader) : %.3f ' % (len(self.trainloader)))

        self.best_pred = 0.0
        #for sumaryWriter
        self.track_loss = 0.0
        self.track_pixAcc = 0.0
        self.track_mIoU = 0.0
Пример #4
0
def main_worker(gpu, ngpus_per_node, args):
    global best_pred
    args.gpu = gpu
    args.rank = args.rank * ngpus_per_node + gpu
    print('rank: {} / {}'.format(args.rank, args.world_size))
    dist.init_process_group(backend=args.dist_backend,
                            init_method=args.dist_url,
                            world_size=args.world_size,
                            rank=args.rank)
    torch.cuda.set_device(args.gpu)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    cudnn.benchmark = True
    # data transforms
    input_transform = transform.Compose([
        transform.ToTensor(),
        transform.Normalize([.485, .456, .406], [.229, .224, .225])
    ])
    # dataset
    data_kwargs = {
        'transform': input_transform,
        'base_size': args.base_size,
        'crop_size': args.crop_size
    }
    trainset = get_dataset(args.dataset,
                           split=args.train_split,
                           mode='train',
                           **data_kwargs)
    valset = get_dataset(args.dataset, split='val', mode='val', **data_kwargs)
    train_sampler = torch.utils.data.distributed.DistributedSampler(trainset)
    val_sampler = torch.utils.data.distributed.DistributedSampler(
        valset, shuffle=False)
    # dataloader
    loader_kwargs = {
        'batch_size': args.batch_size,
        'num_workers': args.workers,
        'pin_memory': True
    }
    trainloader = data.DataLoader(trainset,
                                  sampler=train_sampler,
                                  drop_last=True,
                                  **loader_kwargs)
    valloader = data.DataLoader(valset, sampler=val_sampler, **loader_kwargs)
    nclass = trainset.num_class
    # model
    model_kwargs = {}
    if args.rectify:
        model_kwargs['rectified_conv'] = True
        model_kwargs['rectify_avg'] = args.rectify_avg
    model = get_segmentation_model(args.model,
                                   dataset=args.dataset,
                                   backbone=args.backbone,
                                   aux=args.aux,
                                   se_loss=args.se_loss,
                                   norm_layer=DistSyncBatchNorm,
                                   base_size=args.base_size,
                                   crop_size=args.crop_size,
                                   **model_kwargs)
    if args.gpu == 0:
        print(model)
    # optimizer using different LR
    params_list = [
        {
            'params': model.pretrained.parameters(),
            'lr': args.lr
        },
    ]
    if hasattr(model, 'head'):
        params_list.append({
            'params': model.head.parameters(),
            'lr': args.lr * 10
        })
    if hasattr(model, 'auxlayer'):
        params_list.append({
            'params': model.auxlayer.parameters(),
            'lr': args.lr * 10
        })
    optimizer = torch.optim.SGD(params_list,
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    # optimizer = torch.optim.Adam(params_list,
    #                             lr=args.lr,
    #                             # momentum=args.momentum,
    #                             weight_decay=args.weight_decay)
    # criterions
    criterion = SegmentationLosses(se_loss=args.se_loss,
                                   aux=args.aux,
                                   nclass=nclass,
                                   se_weight=args.se_weight,
                                   aux_weight=args.aux_weight)
    # distributed data parallel
    model.cuda(args.gpu)
    criterion.cuda(args.gpu)
    model = DistributedDataParallel(model, device_ids=[args.gpu])
    metric = utils.SegmentationMetric(nclass=nclass)

    # resuming checkpoint
    if args.resume is not None:
        if not os.path.isfile(args.resume):
            raise RuntimeError("=> no checkpoint found at '{}'".format(
                args.resume))

        checkpoint = torch.load(args.resume)
        args.start_epoch = checkpoint['epoch']
        model.module.load_state_dict(checkpoint['state_dict'])
        '''
        checkpoint = torch.load(args.resume, map_location='cpu')
        args.start_epoch = checkpoint['epoch']
        model.module.load_state_dict(checkpoint['state_dict'])
        model.cuda()
        '''
        if not args.ft:
            optimizer.load_state_dict(checkpoint['optimizer'])
        best_pred = checkpoint['best_pred']
        print("=> loaded checkpoint '{}' (epoch {})".format(
            args.resume, checkpoint['epoch']))
    # clear start epoch if fine-tuning
    if args.ft:
        args.start_epoch = 0

    # lr scheduler
    scheduler = utils.LR_Scheduler_Head(args.lr_scheduler, args.lr,
                                        args.epochs, len(trainloader))
    # train_losses = [2.855, 2.513, 2.275, 2.128, 2.001, 1.875, 1.855, 1.916, 1.987, 1.915, 1.952]
    train_losses = []

    def training(epoch):
        train_sampler.set_epoch(epoch)
        global best_pred
        train_loss = 0.0
        model.train()
        tic = time.time()
        for i, (image, target) in enumerate(trainloader):
            scheduler(optimizer, i, epoch, best_pred)
            optimizer.zero_grad()
            outputs = model(image)
            target = target.cuda(args.gpu)
            loss = criterion(*outputs, target)
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            if i % 100 == 0 and args.gpu == 0:
                iter_per_sec = 100.0 / (
                    time.time() - tic) if i != 0 else 1.0 / (time.time() - tic)
                tic = time.time()
                print('Epoch: {}, Iter: {}, Speed: {:.3f} iter/sec, Train loss: {:.3f}'. \
                      format(epoch, i, iter_per_sec, train_loss / (i + 1)))
        train_losses.append(train_loss / len(trainloader))
        if epoch > 1:
            if train_losses[epoch] < train_losses[epoch - 1]:
                utils.save_checkpoint(
                    {
                        'epoch': epoch + 1,
                        'state_dict': model.module.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'best_pred': new_preds[(epoch - 1) // 10],
                    },
                    args,
                    False,
                    filename='checkpoint_train.pth.tar')
        plt.plot(train_losses)
        plt.xlabel('Epoch')
        plt.ylabel('Train_loss')
        plt.title('Train_Loss')
        plt.grid()
        plt.savefig('./loss_fig/train_losses.pdf')
        plt.savefig('./loss_fig/train_losses.svg')
        plt.close()

    # p_m = [(0.3, 0.05), (0.23, 0.54)]
    # new_preds = [0.175, 0.392]
    p_m = []
    new_preds = []

    def validation(epoch):
        # Fast test during the training using single-crop only
        global best_pred
        is_best = False
        model.eval()
        metric.reset()

        for i, (image, target) in enumerate(valloader):
            with torch.no_grad():
                pred = model(image)[0]
                target = target.cuda(args.gpu)
                metric.update(target, pred)

            if i % 100 == 0:
                all_metircs = metric.get_all()
                all_metircs = utils.torch_dist_sum(args.gpu, *all_metircs)
                pixAcc, mIoU = utils.get_pixacc_miou(*all_metircs)
                if args.gpu == 0:
                    print('pixAcc: %.3f, mIoU1: %.3f' % (pixAcc, mIoU))

        all_metircs = metric.get_all()
        all_metircs = utils.torch_dist_sum(args.gpu, *all_metircs)
        pixAcc, mIoU = utils.get_pixacc_miou(*all_metircs)
        if args.gpu == 0:
            print('pixAcc: %.3f, mIoU2: %.3f' % (pixAcc, mIoU))

            p_m.append((pixAcc, mIoU))
            plt.plot(p_m)
            plt.xlabel('10 Epoch')
            plt.ylabel('pixAcc, mIoU')
            plt.title('pixAcc, mIoU')
            plt.grid()
            plt.legend(('pixAcc', 'mIoU'))

            plt.savefig('./loss_fig/pixAcc_mIoU.pdf')
            plt.savefig('./loss_fig/pixAcc_mIoU.svg')
            plt.close()

            if args.eval: return
            new_pred = (pixAcc + mIoU) / 2
            new_preds.append(new_pred)

            plt.plot(new_preds)
            plt.xlabel('10 Epoch')
            plt.ylabel('new_predication')
            plt.title('new_predication')
            plt.grid()
            plt.savefig('./loss_fig/new_predication.pdf')
            plt.savefig('./loss_fig/new_predication.svg')
            plt.close()

            if new_pred > best_pred:
                is_best = True
                best_pred = new_pred
            utils.save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict': model.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'best_pred': best_pred,
                },
                args,
                is_best,
                filename='checkpoint_train_{}.pth.tar'.format(epoch + 1))

    if args.export:
        if args.gpu == 0:
            torch.save(model.module.state_dict(), args.export + '.pth')
        return

    if args.eval:
        validation(args.start_epoch)
        return

    if args.gpu == 0:
        print('Starting Epoch:', args.start_epoch)
        print('Total Epoches:', args.epochs)

    for epoch in range(args.start_epoch, args.epochs):
        tic = time.time()
        training(epoch)
        if epoch % 10 == 0 or epoch == args.epochs - 1:
            validation(epoch)
        elapsed = time.time() - tic
        if args.gpu == 0:
            print(f'Epoch: {epoch}, Time cost: {elapsed}')

    validation(epoch)
Пример #5
0
def main_worker(gpu, ngpus_per_node, args):
    global best_pred
    args.gpu = gpu
    args.rank = args.rank * ngpus_per_node + gpu
    print('rank: {} / {}'.format(args.rank, args.world_size))
    dist.init_process_group(backend=args.dist_backend,
                            init_method=args.dist_url,
                            world_size=args.world_size,
                            rank=args.rank)
    torch.cuda.set_device(args.gpu)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    cudnn.benchmark = True
    # data transforms
    input_transform = transform.Compose([
        transform.ToTensor(),
        transform.Normalize([.485, .456, .406], [.229, .224, .225])
    ])
    # dataset
    data_kwargs = {
        'transform': input_transform,
        'base_size': args.base_size,
        'crop_size': args.crop_size
    }
    trainset = get_dataset(args.dataset,
                           split=args.train_split,
                           mode='train',
                           **data_kwargs)
    valset = get_dataset(args.dataset, split='val', mode='val', **data_kwargs)
    train_sampler = torch.utils.data.distributed.DistributedSampler(trainset)
    val_sampler = torch.utils.data.distributed.DistributedSampler(
        valset, shuffle=False)
    # dataloader
    loader_kwargs = {
        'batch_size': args.batch_size,
        'num_workers': args.workers,
        'pin_memory': True
    }
    trainloader = data.DataLoader(trainset,
                                  sampler=train_sampler,
                                  drop_last=True,
                                  **loader_kwargs)
    valloader = data.DataLoader(valset, sampler=val_sampler, **loader_kwargs)
    nclass = trainset.num_class
    # model
    model_kwargs = {}
    if args.rectify:
        model_kwargs['rectified_conv'] = True
        model_kwargs['rectify_avg'] = args.rectify_avg
    model = get_segmentation_model(args.model,
                                   dataset=args.dataset,
                                   backbone=args.backbone,
                                   aux=args.aux,
                                   se_loss=args.se_loss,
                                   norm_layer=DistSyncBatchNorm,
                                   base_size=args.base_size,
                                   crop_size=args.crop_size,
                                   **model_kwargs)
    if args.gpu == 0:
        print(model)
    # optimizer using different LR
    params_list = [
        {
            'params': model.pretrained.parameters(),
            'lr': args.lr
        },
    ]
    if hasattr(model, 'head'):
        params_list.append({
            'params': model.head.parameters(),
            'lr': args.lr * 10
        })
    if hasattr(model, 'auxlayer'):
        params_list.append({
            'params': model.auxlayer.parameters(),
            'lr': args.lr * 10
        })
    optimizer = torch.optim.SGD(params_list,
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)
    # criterions
    criterion = SegmentationLosses(se_loss=args.se_loss,
                                   aux=args.aux,
                                   nclass=nclass,
                                   se_weight=args.se_weight,
                                   aux_weight=args.aux_weight)
    # distributed data parallel
    model.cuda(args.gpu)
    criterion.cuda(args.gpu)
    model = DistributedDataParallel(model, device_ids=[args.gpu])
    metric = utils.SegmentationMetric(nclass=nclass)

    # resuming checkpoint
    if args.resume is not None:
        if not os.path.isfile(args.resume):
            raise RuntimeError("=> no checkpoint found at '{}'".format(
                args.resume))
        checkpoint = torch.load(args.resume)
        args.start_epoch = checkpoint['epoch']
        model.module.load_state_dict(checkpoint['state_dict'])
        if not args.ft:
            optimizer.load_state_dict(checkpoint['optimizer'])
        best_pred = checkpoint['best_pred']
        print("=> loaded checkpoint '{}' (epoch {})".format(
            args.resume, checkpoint['epoch']))
    # clear start epoch if fine-tuning
    if args.ft:
        args.start_epoch = 0

    # lr scheduler
    scheduler = utils.LR_Scheduler_Head(args.lr_scheduler, args.lr,
                                        args.epochs, len(trainloader))

    def training(epoch):
        global best_pred
        train_loss = 0.0
        model.train()
        tic = time.time()
        for i, (image, target) in enumerate(trainloader):
            scheduler(optimizer, i, epoch, best_pred)
            optimizer.zero_grad()
            outputs = model(image)
            target = target.cuda(args.gpu)
            loss = criterion(*outputs, target)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
            if i % 100 == 0 and args.gpu == 0:
                iter_per_sec = 100.0 / (
                    time.time() - tic) if i != 0 else 1.0 / (time.time() - tic)
                tic = time.time()
                print('Epoch: {}, Iter: {}, Speed: {:.3f} iter/sec, Train loss: {:.3f}'. \
                      format(epoch, i, iter_per_sec, train_loss / (i + 1)))

    def validation(epoch):
        # Fast test during the training using single-crop only
        global best_pred
        is_best = False
        model.eval()
        metric.reset()

        for i, (image, target) in enumerate(valloader):
            with torch.no_grad():
                #correct, labeled, inter, union = eval_batch(model, image, target)
                pred = model(image)[0]
                target = target.cuda(args.gpu)
                metric.update(target, pred)

            pixAcc, mIoU = metric.get()
            if i % 100 == 0 and args.gpu == 0:
                print('pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU))

        if args.gpu == 0:
            pixAcc, mIoU = torch_dist_avg(args.gpu, pixAcc, mIoU)
            print('pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU))

            new_pred = (pixAcc + mIoU) / 2
            if new_pred > best_pred:
                is_best = True
                best_pred = new_pred
            utils.save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict': model.module.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'best_pred': best_pred,
                }, args, is_best)

    if args.gpu == 0:
        print('Starting Epoch:', args.start_epoch)
        print('Total Epoches:', args.epochs)

    for epoch in range(args.start_epoch, args.epochs):
        tic = time.time()
        training(epoch)
        if epoch % 10 == 0:
            validation(epoch)
        elapsed = time.time() - tic
        if args.gpu == 0:
            print(f'Epoch: {epoch}, Time cost: {elapsed}')

    validation(epoch)
Пример #6
0
 def __init__(self, args):
     self.args = args
     args.log_name = str(args.checkname)
     args.log_root = os.path.join(args.dataset, args.log_root) # dataset/log/
     self.logger = utils.create_logger(args.log_root, args.log_name)
     # data transforms
     input_transform = transform.Compose([
         transform.ToTensor(),
         transform.Normalize([.485, .456, .406], [.229, .224, .225])])
     # dataset
     data_kwargs = {'transform': input_transform, 'base_size': args.base_size,
                    'crop_size': args.crop_size, 'logger': self.logger,
                    'scale': args.scale}
     trainset = get_segmentation_dataset(args.dataset, split='trainval', mode='trainval',
                                         **data_kwargs)
     testset = get_segmentation_dataset(args.dataset, split='val', mode='val',  # crop fixed size as model input
                                        **data_kwargs)
     # dataloader
     kwargs = {'num_workers': args.workers, 'pin_memory': True} \
         if args.cuda else {}
     self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size,
                                        drop_last=True, shuffle=True, **kwargs)
     self.valloader = data.DataLoader(testset, batch_size=args.batch_size,
                                      drop_last=False, shuffle=False, **kwargs)
     self.nclass = trainset.num_class
     # model
     model = get_segmentation_model(args.model, dataset=args.dataset,
                                    backbone=args.backbone,
                                    norm_layer=BatchNorm2d,
                                    base_size=args.base_size, crop_size=args.crop_size,
                                    )
     #print(model)
     self.logger.info(model)
     # optimizer using different LR
     params_list = [{'params': model.pretrained.parameters(), 'lr': args.lr},]
     if hasattr(model, 'head'):
         print("this model has object, head")
         params_list.append({'params': model.head.parameters(), 'lr': args.lr*10})
     optimizer = torch.optim.SGD(params_list,
                 lr=args.lr,
                 momentum=args.momentum,
                 weight_decay=args.weight_decay)
     self.criterion = SegmentationLosses(nclass=self.nclass)
     
     self.model, self.optimizer = model, optimizer
     # using cuda
     if args.cuda:
         self.model = DataParallelModel(self.model).cuda()
         self.criterion = DataParallelCriterion(self.criterion).cuda()
     
     # resuming checkpoint
     if args.resume:
         if not os.path.isfile(args.resume):
             raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
         checkpoint = torch.load(args.resume)
         args.start_epoch = checkpoint['epoch']
         if args.cuda:
             self.model.module.load_state_dict(checkpoint['state_dict'])
         else:
             self.model.load_state_dict(checkpoint['state_dict'])
         if not args.ft:
             self.optimizer.load_state_dict(checkpoint['optimizer'])
         self.best_pred = checkpoint['best_pred']
         self.logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
     # lr scheduler
     self.scheduler = utils.LR_Scheduler(args.lr_scheduler, args.lr,
                                         args.epochs, len(self.trainloader), logger=self.logger,
                                         lr_step=args.lr_step)
     self.best_pred = 0.0
    def __init__(self, args):
        self.args = args
        args.log_name = str(args.checkname)
        self.logger = utils.create_logger(args.log_root, args.log_name)
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            # transform.Normalize([.485, .456, .406], [.229, .224, .225])
            ])
        # dataset
        data_kwargs = {'transform': input_transform, 'base_size': args.base_size, 'crop_size': args.crop_size, 'logger': self.logger, 'scale': args.scale}
        trainset = get_segmentation_dataset(args.dataset, split='train', mode='train', **data_kwargs)
        testset = get_segmentation_dataset(args.dataset, split='val', mode='val', **data_kwargs)
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True} if args.cuda else {}
        self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size, drop_last=True, shuffle=True, **kwargs)
        self.valloader = data.DataLoader(testset, batch_size=args.batch_size, drop_last=False, shuffle=False, **kwargs)
        self.nclass = trainset.num_class

        self.confusion_matrix_weather = utils.ConfusionMatrix(7)
        self.confusion_matrix_timeofday = utils.ConfusionMatrix(4)

        # model
        model = get_segmentation_model(args.model, dataset=args.dataset, backbone=args.backbone, aux=args.aux, se_loss=args.se_loss,
                                       # norm_layer=BatchNorm2d, # for multi-gpu
                                       base_size=args.base_size, crop_size=args.crop_size, multi_grid=args.multi_grid, multi_dilation=args.multi_dilation)

        #####################################################################
        self.logger.info(model)
        # optimizer using different LR
        params_list = [{'params': model.pretrained.parameters(), 'lr': 1 * args.lr},]
        if hasattr(model, 'head'):
            params_list.append({'params': model.head.parameters(), 'lr': 1 * args.lr*10})
        if hasattr(model, 'auxlayer'):
            params_list.append({'params': model.auxlayer.parameters(), 'lr': 1 * args.lr*10})
        params_list.append({'params': model.weather_classifier.parameters(), 'lr': 0 * args.lr*10})
        params_list.append({'params': model.time_classifier.parameters(), 'lr': 0 * args.lr*10})
        optimizer = torch.optim.SGD(params_list, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

        # self.criterion = SegmentationMultiLosses(nclass=self.nclass)
        self.criterion = SegmentationLosses(se_loss=args.se_loss, aux=args.aux, nclass=self.nclass)
        # self.criterion = torch.nn.CrossEntropyLoss()
        #####################################################################

        self.model, self.optimizer = model, optimizer
        # using cuda
        if args.cuda:
            self.model = DataParallelModel(self.model).cuda()
            self.criterion = DataParallelCriterion(self.criterion).cuda()
        # finetune from a trained model
        if args.ft:
            args.start_epoch = 0
            checkpoint = torch.load(args.ft_resume)
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'], strict=False)
            else:
                self.model.load_state_dict(checkpoint['state_dict'], strict=False)
            self.logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.ft_resume, checkpoint['epoch']))
        # resuming checkpoint
        if args.resume:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            self.logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
        # lr scheduler
        self.scheduler = utils.LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.trainloader), logger=self.logger, lr_step=args.lr_step)
        self.best_pred = 0.0

        self.logger.info(self.args)
Пример #8
0
def main(args):
    writer = SummaryWriter(log_dir=args.tensorboard_log_dir)
    w, h = map(int, args.input_size.split(','))
    w_target, h_target = map(int, args.input_size_target.split(','))

    joint_transform = joint_transforms.Compose([
        joint_transforms.FreeScale((h, w)),
        joint_transforms.RandomHorizontallyFlip(),
    ])
    normalize = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
    input_transform = standard_transforms.Compose([
        standard_transforms.ToTensor(),
        standard_transforms.Normalize(*normalize),
    ])
    target_transform = extended_transforms.MaskToTensor()
    restore_transform = standard_transforms.ToPILImage()

    if '5' in args.data_dir:
        dataset = GTA5DataSetLMDB(
            args.data_dir, args.data_list,
            joint_transform=joint_transform,
            transform=input_transform, target_transform=target_transform,
        )
    else:
        dataset = CityscapesDataSetLMDB(
            args.data_dir, args.data_list,
            joint_transform=joint_transform,
            transform=input_transform, target_transform=target_transform,
        )
    loader = data.DataLoader(
        dataset, batch_size=args.batch_size,
        shuffle=True, num_workers=args.num_workers, pin_memory=True
    )
    val_dataset = CityscapesDataSetLMDB(
        args.data_dir_target, args.data_list_target,
        # joint_transform=joint_transform,
        transform=input_transform, target_transform=target_transform
    )
    val_loader = data.DataLoader(
        val_dataset, batch_size=args.batch_size,
        shuffle=False, num_workers=args.num_workers, pin_memory=True
    )


    upsample = nn.Upsample(size=(h_target, w_target),
                           mode='bilinear', align_corners=True)

    net = PSP(
        nclass = args.n_classes, backbone='resnet101', 
        root=args.model_path_prefix, norm_layer=BatchNorm2d,
    )

    params_list = [
        {'params': net.pretrained.parameters(), 'lr': args.learning_rate},
        {'params': net.head.parameters(), 'lr': args.learning_rate*10},
        {'params': net.auxlayer.parameters(), 'lr': args.learning_rate*10},
    ]
    optimizer = torch.optim.SGD(params_list,
                                lr=args.learning_rate,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    criterion = SegmentationLosses(nclass=args.n_classes, aux=True, ignore_index=255)
    # criterion = SegmentationMultiLosses(nclass=args.n_classes, ignore_index=255)

    net = DataParallelModel(net).cuda()
    criterion = DataParallelCriterion(criterion).cuda()

    logger = utils.create_logger(args.tensorboard_log_dir, 'PSP_train')
    scheduler = utils.LR_Scheduler(args.lr_scheduler, args.learning_rate,
                                   args.num_epoch, len(loader), logger=logger,
                                   lr_step=args.lr_step)

    net_eval = Eval(net)

    num_batches = len(loader)
    best_pred = 0.0
    for epoch in range(args.num_epoch):

        loss_rec = AverageMeter()
        data_time_rec = AverageMeter()
        batch_time_rec = AverageMeter()

        tem_time = time.time()
        for batch_index, batch_data in enumerate(loader):
            scheduler(optimizer, batch_index, epoch, best_pred)
            show_fig = (batch_index+1) % args.show_img_freq == 0
            iteration = batch_index+1+epoch*num_batches

            net.train()
            img, label, name = batch_data
            img = img.cuda()
            label_cuda = label.cuda()
            data_time_rec.update(time.time()-tem_time)

            output = net(img)
            loss = criterion(output, label_cuda)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            loss_rec.update(loss.item())
            writer.add_scalar('A_seg_loss', loss.item(), iteration)
            batch_time_rec.update(time.time()-tem_time)
            tem_time = time.time()

            if (batch_index+1) % args.print_freq == 0:
                print(
                    f'Epoch [{epoch+1:d}/{args.num_epoch:d}][{batch_index+1:d}/{num_batches:d}]\t'
                    f'Time: {batch_time_rec.avg:.2f}   '
                    f'Data: {data_time_rec.avg:.2f}   '
                    f'Loss: {loss_rec.avg:.2f}'
                )
            # if show_fig:
            #     # base_lr = optimizer.param_groups[0]["lr"]
            #     output = torch.argmax(output[0][0], dim=1).detach()[0, ...].cpu()
            #     # fig, axes = plt.subplots(2, 1, figsize=(12, 14))
            #     # axes = axes.flat
            #     # axes[0].imshow(colorize_mask(output.numpy()))
            #     # axes[0].set_title(name[0])
            #     # axes[1].imshow(colorize_mask(label[0, ...].numpy()))
            #     # axes[1].set_title(f'seg_true_{base_lr:.6f}')
            #     # writer.add_figure('A_seg', fig, iteration)
            #     output_mask = np.asarray(colorize_mask(output.numpy()))
            #     label = np.asarray(colorize_mask(label[0,...].numpy()))
            #     image_out = np.concatenate([output_mask, label])
            #     writer.add_image('A_seg', image_out, iteration)

        mean_iu = test_miou(net_eval, val_loader, upsample,
                            './style_seg/dataset/info.json')
        torch.save(
            net.module.state_dict(),
            os.path.join(args.save_path_prefix, f'{epoch:d}_{mean_iu*100:.0f}.pth')
        )

    writer.close()
Пример #9
0
    def __init__(self, args):
        self.args = args
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            transform.Normalize([.485, .456, .406], [.229, .224, .225])
        ])
        # dataset
        data_kwargs = {
            'transform': input_transform,
            'base_size': args.base_size,
            'crop_size': args.crop_size
        }
        trainset = get_segmentation_dataset(args.dataset,
                                            split=args.train_split,
                                            mode='train',
                                            **data_kwargs)
        testset = get_segmentation_dataset(args.dataset,
                                           split='val',
                                           mode='val',
                                           **data_kwargs)
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True} \
            if args.cuda else {}
        self.trainloader = data.DataLoader(trainset,
                                           batch_size=args.batch_size,
                                           drop_last=False,
                                           shuffle=True,
                                           **kwargs)
        self.valloader = data.DataLoader(testset,
                                         batch_size=args.batch_size,
                                         drop_last=False,
                                         shuffle=False,
                                         **kwargs)
        self.nclass = trainset.num_class
        # model
        model = get_segmentation_model(args.model,
                                       dataset=args.dataset,
                                       backbone=args.backbone,
                                       dilated=args.dilated,
                                       multi_grid=args.multi_grid,
                                       stride=args.stride,
                                       lateral=args.lateral,
                                       jpu=args.jpu,
                                       aux=args.aux,
                                       se_loss=args.se_loss,
                                       norm_layer=SyncBatchNorm,
                                       base_size=args.base_size,
                                       crop_size=args.crop_size)
        # print(model)
        # optimizer using different LR
        params_list = [
            {
                'params': model.pretrained.parameters(),
                'lr': args.lr
            },
        ]
        if hasattr(model, 'jpu') and model.jpu:
            params_list.append({
                'params': model.jpu.parameters(),
                'lr': args.lr * 10
            })
        if hasattr(model, 'head'):
            params_list.append({
                'params': model.head.parameters(),
                'lr': args.lr * 10
            })
        if hasattr(model, 'auxlayer'):
            params_list.append({
                'params': model.auxlayer.parameters(),
                'lr': args.lr * 10
            })
        optimizer = torch.optim.SGD(params_list,
                                    lr=args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)

        class_balance_weight = 'None'
        if args.dataset == "pcontext60":
            class_balance_weight = torch.tensor([
                1.3225e-01, 2.0757e+00, 1.8146e+01, 5.5052e+00, 2.2060e+00,
                2.8054e+01, 2.0566e+00, 1.8598e+00, 2.4027e+00, 9.3435e+00,
                3.5990e+00, 2.7487e-01, 1.4216e+00, 2.4986e+00, 7.7258e-01,
                4.9020e-01, 2.9067e+00, 1.2197e+00, 2.2744e+00, 2.0444e+01,
                3.0057e+00, 1.8167e+01, 3.7405e+00, 5.6749e-01, 3.2631e+00,
                1.5007e+00, 5.5519e-01, 1.0056e+01, 1.8952e+01, 2.6792e-01,
                2.7479e-01, 1.8309e+00, 2.0428e+01, 1.4788e+01, 1.4908e+00,
                1.9113e+00, 2.6166e+02, 2.3233e-01, 1.9096e+01, 6.7025e+00,
                2.8756e+00, 6.8804e-01, 4.4140e+00, 2.5621e+00, 4.4409e+00,
                4.3821e+00, 1.3774e+01, 1.9803e-01, 3.6944e+00, 1.0397e+00,
                2.0601e+00, 5.5811e+00, 1.3242e+00, 3.0088e-01, 1.7344e+01,
                2.1569e+00, 2.7216e-01, 5.8731e-01, 1.9956e+00, 4.4004e+00
            ])

        elif args.dataset == "ade20k":
            class_balance_weight = torch.tensor([
                0.0772, 0.0431, 0.0631, 0.0766, 0.1095, 0.1399, 0.1502, 0.1702,
                0.2958, 0.3400, 0.3738, 0.3749, 0.4059, 0.4266, 0.4524, 0.5725,
                0.6145, 0.6240, 0.6709, 0.6517, 0.6591, 0.6818, 0.9203, 0.9965,
                1.0272, 1.0967, 1.1202, 1.2354, 1.2900, 1.5038, 1.5160, 1.5172,
                1.5036, 2.0746, 2.1426, 2.3159, 2.2792, 2.6468, 2.8038, 2.8777,
                2.9525, 2.9051, 3.1050, 3.1785, 3.3533, 3.5300, 3.6120, 3.7006,
                3.6790, 3.8057, 3.7604, 3.8043, 3.6610, 3.8268, 4.0644, 4.2698,
                4.0163, 4.0272, 4.1626, 4.3702, 4.3144, 4.3612, 4.4389, 4.5612,
                5.1537, 4.7653, 4.8421, 4.6813, 5.1037, 5.0729, 5.2657, 5.6153,
                5.8240, 5.5360, 5.6373, 6.6972, 6.4561, 6.9555, 7.9239, 7.3265,
                7.7501, 7.7900, 8.0528, 8.5415, 8.1316, 8.6557, 9.0550, 9.0081,
                9.3262, 9.1391, 9.7237, 9.3775, 9.4592, 9.7883, 10.6705,
                10.2113, 10.5845, 10.9667, 10.8754, 10.8274, 11.6427, 11.0687,
                10.8417, 11.0287, 12.2030, 12.8830, 12.5082, 13.0703, 13.8410,
                12.3264, 12.9048, 12.9664, 12.3523, 13.9830, 13.8105, 14.0345,
                15.0054, 13.9801, 14.1048, 13.9025, 13.6179, 17.0577, 15.8351,
                17.7102, 17.3153, 19.4640, 17.7629, 19.9093, 16.9529, 19.3016,
                17.6671, 19.4525, 20.0794, 18.3574, 19.1219, 19.5089, 19.2417,
                20.2534, 20.0332, 21.7496, 21.5427, 20.3008, 21.1942, 22.7051,
                23.3359, 22.4300, 20.9934, 26.9073, 31.7362, 30.0784
            ])
        elif args.dataset == "cocostuff":
            class_balance_weight = torch.tensor([
                4.8557e-02, 6.4709e-02, 3.9255e+00, 9.4797e-01, 1.2703e+00,
                1.4151e+00, 7.9733e-01, 8.4903e-01, 1.0751e+00, 2.4001e+00,
                8.9736e+00, 5.3036e+00, 6.0410e+00, 9.3285e+00, 1.5952e+00,
                3.6090e+00, 9.8772e-01, 1.2319e+00, 1.9194e+00, 2.7624e+00,
                2.0548e+00, 1.2058e+00, 3.6424e+00, 2.0789e+00, 1.7851e+00,
                6.7138e+00, 2.1315e+00, 6.9813e+00, 1.2679e+02, 2.0357e+00,
                2.2933e+01, 2.3198e+01, 1.7439e+01, 4.1294e+01, 7.8678e+00,
                4.3444e+01, 6.7543e+01, 1.0066e+01, 6.7520e+00, 1.3174e+01,
                3.3499e+00, 6.9737e+00, 2.1482e+00, 1.9428e+01, 1.3240e+01,
                1.9218e+01, 7.6836e-01, 2.6041e+00, 6.1822e+00, 1.4070e+00,
                4.4074e+00, 5.7792e+00, 1.0321e+01, 4.9922e+00, 6.7408e-01,
                3.1554e+00, 1.5832e+00, 8.9685e-01, 1.1686e+00, 2.6487e+00,
                6.5354e-01, 2.3801e-01, 1.9536e+00, 1.5862e+00, 1.7797e+00,
                2.7385e+01, 1.2419e+01, 3.9287e+00, 7.8897e+00, 7.5737e+00,
                1.9758e+00, 8.1962e+01, 3.6922e+00, 2.0039e+00, 2.7333e+00,
                5.4717e+00, 3.9048e+00, 1.9184e+01, 2.2689e+00, 2.6091e+02,
                4.7366e+01, 2.3844e+00, 8.3310e+00, 1.4857e+01, 6.5076e+00,
                2.0854e-01, 1.0425e+00, 1.7386e+00, 1.1973e+01, 5.2862e+00,
                1.7341e+00, 8.6124e-01, 9.3702e+00, 2.8545e+00, 6.0123e+00,
                1.7560e-01, 1.8128e+00, 1.3784e+00, 1.3699e+00, 2.3728e+00,
                6.2819e-01, 1.3097e+00, 4.7892e-01, 1.0268e+01, 1.2307e+00,
                5.5662e+00, 1.2867e+00, 1.2745e+00, 4.7505e+00, 8.4029e+00,
                1.8679e+00, 1.0519e+01, 1.1240e+00, 1.4975e-01, 2.3146e+00,
                4.1265e-01, 2.5896e+00, 1.4537e+00, 4.5575e+00, 7.8143e+00,
                1.4603e+01, 2.8812e+00, 1.8868e+00, 7.8131e+01, 1.9323e+00,
                7.4980e+00, 1.2446e+01, 2.1856e+00, 3.0973e+00, 4.1270e-01,
                4.9016e+01, 7.1001e-01, 7.4035e+00, 2.3395e+00, 2.9207e-01,
                2.4156e+00, 3.3211e+00, 2.1300e+00, 2.4533e-01, 1.7081e+00,
                4.6621e+00, 2.9199e+00, 1.0407e+01, 7.6207e-01, 2.7806e-01,
                3.7711e+00, 1.1852e-01, 8.8280e+00, 3.1700e-01, 6.3765e+01,
                6.6032e+00, 5.2177e+00, 4.3596e+00, 6.2965e-01, 1.0207e+00,
                1.1731e+01, 2.3935e+00, 9.2767e+00, 1.1023e-01, 3.6947e+00,
                1.3943e+00, 2.3407e+00, 1.2112e-01, 2.8518e+00, 2.8195e+00,
                1.0078e+00, 1.6614e+00, 6.5307e-01, 1.9070e+01, 2.7231e+00,
                6.0769e-01
            ])

        # criterions
        self.criterion = SegmentationLosses(se_loss=args.se_loss,
                                            aux=args.aux,
                                            nclass=self.nclass,
                                            se_weight=args.se_weight,
                                            aux_weight=args.aux_weight,
                                            weight=class_balance_weight)
        self.model, self.optimizer = model, optimizer
        # using cuda
        if args.cuda:
            self.model = DataParallelModel(self.model).cuda()
            self.criterion = DataParallelCriterion(self.criterion).cuda()
        # resuming checkpoint
        self.best_pred = 0.0
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'".format(
                    args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        # clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
        # lr scheduler
        self.scheduler = utils.LR_Scheduler(args.lr_scheduler, args.lr,
                                            args.epochs, len(self.trainloader))