def post_install_setup_minimum(args):
    """If not all data are available, this scripts allows to
    create dummy datas (temperature and service sector load profiles)

    """
    path_config_file = args.config_file

    config = data_loader.read_config_file(path_config_file)
    path_local_data = config['PATHS']['path_local_data']

    # ==========================================
    # Post installation setup witout access to non publicy available data
    # ==========================================
    print(
        "... running initialisation scripts with only publicly available data")

    local_paths = data_loader.get_local_paths(path_config_file)

    # Create folders to input data
    raw_folder = os.path.join(path_local_data, '_raw_data')

    basic_functions.create_folder(raw_folder)
    basic_functions.create_folder(config['PATHS']['path_processed_data'])
    basic_functions.create_folder(local_paths['path_post_installation_data'])
    basic_functions.create_folder(local_paths['load_profiles'])
    basic_functions.create_folder(local_paths['rs_load_profile_txt'])
    basic_functions.create_folder(local_paths['ss_load_profile_txt'])

    # Load data
    data = {}

    data['paths'] = data_loader.load_paths(path_config_file)

    data['lookups'] = lookup_tables.basic_lookups()

    data['enduses'], data['sectors'], data[
        'fuels'], lookup_enduses, lookup_sector_enduses = data_loader.load_fuels(
            data['paths'])

    # Assumptions
    data['assumptions'] = general_assumptions.Assumptions(
        lookup_enduses=lookup_enduses,
        lookup_sector_enduses=lookup_sector_enduses,
        base_yr=2015,
        weather_by=config['CONFIG']['user_defined_weather_by'],
        simulation_end_yr=config['CONFIG']['user_defined_simulation_end_yr'],
        paths=data['paths'],
        enduses=data['enduses'],
        sectors=data['sectors'])

    # Read in residential submodel shapes
    run(data['paths'], local_paths, config['CONFIG']['base_yr'])

    # --------
    # Dummy service sector load profiles
    # --------
    dummy_sectoral_load_profiles(local_paths, path_config_file)

    print(
        "Successfully finished post installation setup with open source data")
Пример #2
0
def test_assign_by_fuel_tech_p(config_file):
    """
    """
    config = data_loader.read_config_file(config_file)

    # Load data
    data = {}
    data['paths'] = config['CONFIG_DATA']
    data['lookups'] = lookup_tables.basic_lookups()
    data['enduses'], data['sectors'], data[
        'fuels'], _, _ = data_loader.load_fuels(data['paths'])

    data['local_paths'] = data_loader.get_local_paths(path_main)

    #Load assumptions
    base_yr = 2015

    data['assumptions'] = general_assumptions.Assumptions(
        submodels_names=['a'],
        base_yr=base_yr,
        curr_yr=None,
        sim_yrs=None,
        paths=data['paths'],
        enduses=data['enduses'],
        sectors=data['sectors'],
        fueltypes=data['lookups']['fueltypes'],
        fueltypes_nr=data['lookups']['fueltypes_nr'])

    strategy_vars_def.load_param_assump(data['paths'], data['local_paths'],
                                        data['assumptions'])

    fuel_tech_p_by = fuel_shares.assign_by_fuel_tech_p(
        data['enduses'], data['sectors'], data['lookups']['fueltypes'],
        data['lookups']['fueltypes_nr'])
Пример #3
0
if __name__ == "__main__":
    """Pass the path to the .ini file as argument

    Example:
    pthon energy_demand/energy_demand/main.py C:/Users/cenv0553/ed/energy_demand/local_run_config_file.ini

    TOOD IS path_config_data necessary?
    """
    
    # Update cluster file: #os.path.dirname(__file__), '..', 'local_run_config_file_cluster.ini'))
    if os.path.isfile(sys.argv[1]):
        path_config  = sys.argv[1]
    else:
        raise Exception("The defined .ini file does not exist_ {}".format(sys.argv[1]))
    config = data_loader.read_config_file(path_config)

    data = {}
    sim_yrs = [2015, 2020, 2025, 2030, 2035, 2040, 2045, 2050]
    #sim_yrs = [2015, 2020, 2050] #, 2050]
    sim_yrs = [2015, 2030, 2050]

    if len(sys.argv) > 3: #user defined arguments are provide
        scenario_name = str(sys.argv[2])
        weather_realisation = str(sys.argv[3]) # Weather realisation 
    else:
        scenario_name = "_dm_10P_"
        weather_realisation = 'NF1'

    print("-------------------------------------")
    print("Information")
Пример #4
0
def post_install_setup(args):
    """Run this function after installing the energy_demand
    model with smif and putting the data folder with all necessary
    data into a local drive. This scripts only needs to be
    executed once after the energy_demand model has been installed

    Arguments
    ----------
    args : object
        Arguments defined in ``./cli/__init__.py``
    """
    print("... start running initialisation scripts", flush=True)

    path_config_file = args.local_data

    config = data_loader.read_config_file(path_config_file)
    local_data_path = config['PATHS']['path_local_data']

    path_results = resource_filename(Requirement.parse("energy_demand"),
                                     "results")
    local_data_path = args.local_data

    path_config = config['PATHS']['path_energy_demand_config']
    base_yr = config['CONFIG']['base_yr']

    data = {}
    data['paths'] = config['CONFIG_DATA']
    data['local_paths'] = config['DATA_PATHS']
    data['result_paths'] = config['RESULT_DATA']
    data['lookups'] = lookup_tables.basic_lookups()
    data['enduses'], data['sectors'], data['fuels'], lookup_enduses, \
        lookup_sector_enduses = data_loader.load_fuels(data['paths'])

    data['assumptions'] = general_assumptions.Assumptions(
        lookup_enduses=lookup_enduses,
        lookup_sector_enduses=lookup_sector_enduses,
        base_yr=base_yr,
        paths=data['paths'],
        enduses=data['enduses'],
        sectors=data['sectors'])

    # Delete all previous data from previous model runs
    basic_functions.del_previous_setup(data['local_paths']['data_processed'])
    basic_functions.del_previous_setup(data['result_paths']['data_results'])
    basic_functions.del_previous_setup(
        data['local_paths']['path_post_installation_data'])

    # Create folders and subfolder for data_processed
    folders_to_create = [
        data['local_paths']['data_processed'],
        data['local_paths']['path_post_installation_data'],
        data['local_paths']['load_profiles'],
        data['local_paths']['rs_load_profile_txt'],
        data['local_paths']['ss_load_profile_txt']
    ]

    for folder in folders_to_create:
        basic_functions.create_folder(folder)

    print("... Read in residential submodel load profiles", flush=True)
    s_rs_raw_shapes.run(data['paths'], data['local_paths'], base_yr)

    print("... Read in service submodel load profiles", flush=True)
    s_ss_raw_shapes.run(data['paths'], data['local_paths'], data['lookups'])

    # Input data preparation
    print("Generate additional data", flush=True)

    # Extract NISMOD population data
    path_to_zip_file = os.path.join(
        local_data_path, "population-economic-smif-csv-from-nismod-db.zip")
    path_extraction = os.path.join(local_data_path, 'scenarios',
                                   "MISTRAL_pop_gva")
    zip_ref = zipfile.ZipFile(path_to_zip_file, 'r')
    zip_ref.extractall(path_extraction)
    zip_ref.close()

    # Complete gva and pop data for every sector
    data_pop = os.path.join(local_data_path, "scenarios", "MISTRAL_pop_gva",
                            "data")
    path_geography = os.path.join(
        local_data_path, "scenarios",
        "uk_pop_principal_2015_2050_MSOA_england.csv")
    geography_name = "region"  # "lad_uk_2016"

    script_data_preparation_MISTRAL_pop_gva.run(
        path_to_folder=data_pop,
        path_MSOA_baseline=path_geography,
        MSOA_calculations=False,
        geography_name="region")  # "lad_uk_2016"

    print("... successfully finished setup")
    return
Пример #5
0
    def simulate(self, data_handle):
        """Runs the Energy Demand model for one `timestep`

        Arguments
        ---------
        data_handle : dict
            A dictionary containing all parameters and model inputs defined in
            the smif configuration by name

        Returns
        =======
        supply_results : dict
            key: name defined in sector models
                value: np.zeros((len(reg), len(intervals)) )
        """
        data = {}

        region_set_name = self._get_region_set_name()
        path_main = self._get_working_dir()
        config_file_path = os.path.join(path_main, 'wrapperconfig.ini')
        config = data_loader.read_config_file(config_file_path)

        # Replace constrained | unconstrained mode from narrative
        mode = self._get_mode(data_handle)
        config['CRITERIA']['mode_constrained'] = mode

        virtual_building_stock_criteria = self._get_virtual_dw_stock(
            data_handle)
        config['CRITERIA'][
            'virtual_building_stock_criteria'] = virtual_building_stock_criteria

        logging.info("MODE {} VIRTUAL_STOCK {}".format(
            mode, virtual_building_stock_criteria))

        curr_yr = self._get_simulation_yr(data_handle)
        base_yr = config['CONFIG']['base_yr']
        weather_yr = curr_yr

        sim_yrs = self._get_simulation_yrs(data_handle)

        temp_and_result_path = config['PATHS']['path_result_data']

        data['result_paths'] = basic_functions.get_result_paths(
            temp_and_result_path)
        for path_folder in data['result_paths'].values():
            basic_functions.create_folder(path_folder)

        # --------------------------------------------------
        # Read all other data
        # --------------------------------------------------
        data['scenario_data'] = defaultdict(dict)
        data['scenario_data']['gva_industry'] = defaultdict(dict)
        data['scenario_data']['rs_floorarea'] = defaultdict(dict)
        data['scenario_data']['ss_floorarea'] = defaultdict(dict)

        pop_array_by = data_handle.get_base_timestep_data('population')
        gva_array_by = data_handle.get_base_timestep_data(
            'gva_per_head').as_ndarray()

        data['regions'] = pop_array_by.spec.dim_coords(region_set_name).ids
        data['reg_coord'] = self._get_coordinates(
            pop_array_by.spec.dim_coords(region_set_name))

        data['scenario_data']['population'][
            base_yr] = self._assign_array_to_dict(pop_array_by.as_ndarray(),
                                                  data['regions'])
        data['scenario_data']['gva_per_head'][
            base_yr] = self._assign_array_to_dict(gva_array_by,
                                                  data['regions'])
        data['scenario_data']['gva_industry'][
            base_yr] = self._load_gva_sector_data(data_handle, data['regions'])

        floor_area_base = data_handle.get_base_timestep_data(
            'floor_area').as_ndarray()
        data['scenario_data']['rs_floorarea'][
            base_yr] = self._assign_array_to_dict(floor_area_base[:, 0],
                                                  data['regions'])
        data['scenario_data']['ss_floorarea'][
            base_yr] = self._assign_array_to_dict(floor_area_base[:, 1],
                                                  data['regions'])

        # --------------------------------------------
        # Load scenario data for current year
        # --------------------------------------------
        pop_array_cy = data_handle.get_data('population').as_ndarray()
        gva_array_cy = data_handle.get_data('gva_per_head').as_ndarray()

        data['scenario_data']['population'][
            curr_yr] = self._assign_array_to_dict(pop_array_cy,
                                                  data['regions'])
        data['scenario_data']['gva_per_head'][
            curr_yr] = self._assign_array_to_dict(gva_array_cy,
                                                  data['regions'])
        data['scenario_data']['gva_industry'][
            curr_yr] = self._load_gva_sector_data(data_handle, data['regions'])

        floor_area_curr = data_handle.get_data('floor_area').as_ndarray()
        data['scenario_data']['rs_floorarea'][
            curr_yr] = self._assign_array_to_dict(floor_area_curr[:, 0],
                                                  data['regions'])
        data['scenario_data']['ss_floorarea'][
            curr_yr] = self._assign_array_to_dict(floor_area_curr[:, 1],
                                                  data['regions'])

        default_streategy_vars = strategy_vars_def.load_param_assump(
            hard_coded_default_val=True)

        strategy_vars = strategy_vars_def.generate_default_parameter_narratives(
            default_streategy_vars=default_streategy_vars,
            end_yr=config['CONFIG']['user_defined_simulation_end_yr'],
            base_yr=config['CONFIG']['base_yr'])

        user_defined_vars = self._load_narrative_parameters(
            data_handle,
            simulation_base_yr=config['CONFIG']['base_yr'],
            simulation_end_yr=config['CONFIG']
            ['user_defined_simulation_end_yr'],
            default_streategy_vars=default_streategy_vars)

        strategy_vars = data_loader.replace_variable(user_defined_vars,
                                                     strategy_vars)

        # Replace strategy variables not defined in csv files)
        strategy_vars = strategy_vars_def.autocomplete_strategy_vars(
            strategy_vars, narrative_crit=True)

        # -----------------------------
        # Load temperatures
        # -----------------------------
        data['temp_data'] = self._get_temperatures(data_handle,
                                                   sim_yrs,
                                                   data['regions'],
                                                   constant_weather=False)

        # -----------------------------------------
        # Load data
        # -----------------------------------------
        data = wrapper_model.load_data_before_simulation(
            data, sim_yrs, config, curr_yr)
        data['assumptions'].update('strategy_vars', strategy_vars)

        # -----------------------------------------
        # Specific region selection
        # -----------------------------------------
        region_selection = data['regions']

        # Update regions
        setattr(data['assumptions'], 'reg_nrs', len(region_selection))

        # --------------------------------------------------
        # Read results from pre_simulate from disc
        # --------------------------------------------------
        logging.debug("... reading in results from before_model_run(): " +
                      str(temp_and_result_path))
        regional_vars = read_data.read_yaml(
            os.path.join(temp_and_result_path, "regional_vars.yml"))
        non_regional_vars = read_data.read_yaml(
            os.path.join(temp_and_result_path, "non_regional_vars.yml"))
        data['fuel_disagg'] = read_data.read_yaml(
            os.path.join(temp_and_result_path, "fuel_disagg.yml"))
        crit_switch_happening = read_data.read_yaml(
            os.path.join(temp_and_result_path, "crit_switch_happening.yml"))
        setattr(data['assumptions'], 'crit_switch_happening',
                crit_switch_happening)
        setattr(data['assumptions'], 'regional_vars', regional_vars)
        setattr(data['assumptions'], 'non_regional_vars', non_regional_vars)

        # --------------------------------------------------
        # Update depending on narratives
        # --------------------------------------------------
        # Update technological efficiencies for specific year according to narrative
        updated_techs = general_assumptions.update_technology_assumption(
            technologies=data['assumptions'].technologies,
            narrative_f_eff_achieved=data['assumptions'].
            non_regional_vars['f_eff_achieved'][curr_yr],
            narrative_gshp_fraction=data['assumptions'].
            non_regional_vars['gshp_fraction'][curr_yr],
            crit_narrative_input=False)
        data['assumptions'].technologies.update(updated_techs)

        # --------------------------------------------------
        # Run main model function
        # --------------------------------------------------
        sim_obj = energy_demand_model(
            region_selection,
            data,
            config['CRITERIA'],
            data['assumptions'],
            weather_yr=weather_yr,
            weather_by=data['assumptions'].weather_by)

        # --------------------------------------------------
        # Write other results to txt files
        # --------------------------------------------------
        wrapper_model.write_user_defined_results(config['CRITERIA'],
                                                 data['result_paths'], sim_obj,
                                                 data, curr_yr,
                                                 region_selection,
                                                 pop_array_cy)

        # --------------------------------------------------
        # Pass results to supply model and smif
        # --------------------------------------------------
        for key_name in self.outputs:
            if key_name in sim_obj.supply_results.keys():
                logging.debug("...writing `{}` to smif".format(key_name))
                single_result = sim_obj.supply_results[key_name]
                data_handle.set_results(key_name, single_result)
            else:
                logging.info(
                    " '{}' is not provided and thus replaced with empty values"
                    .format(key_name))
                #data_handle.set_results(key_name, np.zeros((391, 8760)))
                logging.info(" '{}' is not in outputs".format(key_name))
                raise Exception("Output '{}' is not defined".format(key_name))
Пример #6
0
    def before_model_run(self, data_handle):
        """Implement this method to conduct pre-model run tasks
        """
        logging.debug("... Start function before_model_run")
        data = {}

        if self._get_base_yr(data_handle) != 2015:
            msg = "The first defined year in model config does not correspond to \
                   the hardcoded base year"

            raise ValueError(msg)

        path_main = self._get_working_dir()
        config_file_path = os.path.join(path_main, 'wrapperconfig.ini')
        config = data_loader.read_config_file(config_file_path)

        # Replace constrained | unconstrained mode from narrative
        mode = self._get_mode(data_handle)
        config['CRITERIA']['mode_constrained'] = mode

        virtual_building_stock_criteria = self._get_virtual_dw_stock(
            data_handle)
        config['CRITERIA'][
            'virtual_building_stock_criteria'] = virtual_building_stock_criteria

        logging.debug("MODE {} VIRTUAL_STOCK {}".format(
            mode, virtual_building_stock_criteria))

        region_set_name = self._get_region_set_name()
        curr_yr = self._get_base_yr(data_handle)
        sim_yrs = self._get_simulation_yrs(data_handle)

        temp_path = config['PATHS']['path_result_data']
        self.create_folders_rename_folders(config)

        # Load hard-coded standard default assumptions
        default_streategy_vars = strategy_vars_def.load_param_assump(
            hard_coded_default_val=True)

        # -----------------------------
        # Reading in narrative variables
        # -----------------------------
        strategy_vars = strategy_vars_def.generate_default_parameter_narratives(
            default_streategy_vars=default_streategy_vars,
            end_yr=config['CONFIG']['user_defined_simulation_end_yr'],
            base_yr=config['CONFIG']['base_yr'])

        user_defined_vars = self._load_narrative_parameters(
            data_handle,
            simulation_base_yr=config['CONFIG']['base_yr'],
            simulation_end_yr=config['CONFIG']
            ['user_defined_simulation_end_yr'],
            default_streategy_vars=default_streategy_vars)

        strategy_vars = data_loader.replace_variable(user_defined_vars,
                                                     strategy_vars)

        strategy_vars = strategy_vars_def.autocomplete_strategy_vars(
            strategy_vars, narrative_crit=True)

        # ------------------------------------------------
        # Load base year scenario data
        # ------------------------------------------------
        data['scenario_data'] = defaultdict(dict)
        data['scenario_data']['gva_industry'] = defaultdict(dict)
        data['scenario_data']['floor_area'] = defaultdict(dict)

        pop_array_by = data_handle.get_base_timestep_data('population')
        gva_array_by = data_handle.get_base_timestep_data('gva_per_head')
        data['regions'] = pop_array_by.spec.dim_coords(region_set_name).ids

        # Floor area and service building count inputs (not from virtual dwelling stock)
        floor_area_curr = data_handle.get_base_timestep_data(
            'floor_area').as_ndarray()
        data['scenario_data']['rs_floorarea'][
            curr_yr] = self._assign_array_to_dict(floor_area_curr[:, 0],
                                                  data['regions'])
        data['scenario_data']['ss_floorarea'][
            curr_yr] = self._assign_array_to_dict(floor_area_curr[:, 1],
                                                  data['regions'])
        data['service_building_count'] = {}
        data['service_building_count'][curr_yr] = []

        data['scenario_data']['population'][
            curr_yr] = self._assign_array_to_dict(pop_array_by.as_ndarray(),
                                                  data['regions'])
        data['scenario_data']['gva_per_head'][
            curr_yr] = self._assign_array_to_dict(gva_array_by.as_ndarray(),
                                                  data['regions'])

        data['reg_coord'] = self._get_coordinates(
            pop_array_by.spec.dim_coords(region_set_name))
        pop_density = self._calculate_pop_density(pop_array_by,
                                                  region_set_name)

        data['scenario_data']['gva_industry'][
            curr_yr] = self._load_gva_sector_data(data_handle, data['regions'])

        # -----------------------------
        # Load temperatures and weather stations
        # -----------------------------
        data['temp_data'] = self._get_temperatures(data_handle,
                                                   sim_yrs,
                                                   data['regions'],
                                                   constant_weather=False)

        # -----------------------------------------
        # Load data
        # ------------------------------------------
        data = wrapper_model.load_data_before_simulation(
            data, sim_yrs, config, curr_yr)

        # Update variables
        data['assumptions'].update('strategy_vars', strategy_vars)
        data['assumptions'].update("rs_regions_without_floorarea", {})  #TODO
        data['assumptions'].update("ss_regions_without_floorarea", {})  #TODO

        technologies = general_assumptions.update_technology_assumption(
            data['assumptions'].technologies,
            data['assumptions'].strategy_vars['f_eff_achieved'],
            data['assumptions'].strategy_vars['gshp_fraction'])
        data['assumptions'].technologies.update(technologies)

        # -----------------------------------------
        # Load switches
        # -----------------------------------------
        switches_service_raw = data_handle.get_parameter(
            'switches_service').as_df()
        switches_service_raw = self._series_to_df(switches_service_raw,
                                                  'switches_service')
        service_switches = read_data.service_switch(switches_service_raw)

        fuel_switches = read_data.read_fuel_switches(
            os.path.join(data['local_paths']['path_strategy_vars'],
                         "switches_fuel.csv"), data['enduses'],
            data['assumptions'].fueltypes, data['assumptions'].technologies)

        capacity_switches = read_data.read_capacity_switch(
            os.path.join(data['local_paths']['path_strategy_vars'],
                         "switches_capacity.csv"))

        # -----------------------------------------
        # Perform pre-step calculations
        # ------------------------------------------
        regional_vars, non_regional_vars, fuel_disagg, crit_switch_happening = wrapper_model.before_simulation(
            data, config, sim_yrs, pop_density, service_switches,
            fuel_switches, capacity_switches)

        # -----------------------------------------
        # Write pre_simulate to disc
        # ------------------------------------------
        write_data.write_yaml(regional_vars,
                              os.path.join(temp_path, "regional_vars.yml"))
        write_data.write_yaml(non_regional_vars,
                              os.path.join(temp_path, "non_regional_vars.yml"))
        write_data.write_yaml(fuel_disagg,
                              os.path.join(temp_path, "fuel_disagg.yml"))
        write_data.write_yaml(
            crit_switch_happening,
            os.path.join(temp_path, "crit_switch_happening.yml"))