Пример #1
0
def PFN_AUC_calculation(jet_array_1, jet_array_2, train_size, test_size):
    X = np.concatenate([jet_array_1, jet_array_2])[:,:,:4]
    y = np.concatenate([np.ones(len(jet_array_1)), np.zeros(len(jet_array_2))])

    ################################### SETTINGS ###################################

    # data controls
    train, val, test = train_size, X.shape[0]-train_size-test_size, test_size
    use_pids = True

    # network architecture parameters
    Phi_sizes, F_sizes = (100, 100, 128), (100, 100, 100)

    # network training parameters
    num_epoch = 10
    batch_size = 500

    ################################################################################

    # convert labels to categorical
    Y = to_categorical(y, num_classes=2)

    # preprocess by centering jets and normalizing pts
    for x in X:
        mask = x[:,0] > 0
        yphi_avg = np.average(x[mask,1:3], weights=x[mask,0], axis=0)
        x[mask,1:3] -= yphi_avg
        x[mask,0] /= x[:,0].sum()

    # handle particle id channel
    if use_pids:
        remap_pids(X, pid_i=3)
    else:
        X = X[:,:,:3]

    # do train/val/test split 
    (X_train, X_val, X_test,
     Y_train, Y_val, Y_test) = data_split(X, Y, val=val, test=test)

    # build architecture
    pfn = 0
    with suppress_stdout():
        pfn = PFN(input_dim=X.shape[-1], Phi_sizes=Phi_sizes, F_sizes=F_sizes)

    # train model
    pfn.fit(X_train, Y_train,
              epochs=num_epoch,
              batch_size=batch_size,
              validation_data=(X_val, Y_val),
              verbose=0)

    # get predictions on test data
    preds = pfn.predict(X_test, batch_size=1000)

    # get area under the ROC curve
    auc = roc_auc_score(Y_test[:,1], preds[:,1])
    
    return auc
Пример #2
0
def model_build(nParticles=60,nFeatures=47, Phi_sizes=(50, 50, 12), F_sizes=(50, 50, 50)):
    """


    :return:
    """
    model = PFN(input_dim=nFeatures, Phi_sizes=Phi_sizes, F_sizes=F_sizes, output_dim=1, output_act='sigmoid', loss='binary_crossentropy')
    return model
Пример #3
0
        x[mask, 3] = map_func(x[mask, 3])
    return X


if __name__ == '__main__':
    phi_sizes = (16, 32, 64, 128)
    f_sizes = (128, 64, 32, 16)

    X, Y = load_data(2000000, 'final_efn_train')
    X = preprocess(X)
    Y = ef.utils.to_categorical(Y)

    X_train, X_val, X_test, Y_train, Y_val, Y_test = split_data(
        X, Y, test_prop=1.0 / 5, val_prop=1.0 / 5)

    adam = optimizers.Adam(lr=.0006)
    pfn = PFN(input_dim=X_train.shape[-1],
              Phi_sizes=phi_sizes,
              F_sizes=f_sizes,
              optimizer=adam)
    pfn.fit(X_train,
            Y_train,
            epochs=NUM_EPOCHS,
            batch_size=250,
            validation_data=(X_val, Y_val),
            verbose=1)
    preds = pfn.predict(X_test, batch_size=1000)

    fpr, tpr, thresholds = roc_curve(Y_test[:, 1], preds[:, 1])
    print('AUC: ' + str(auc(fpr, tpr)))
Пример #4
0
def build_gaussianAnsatz_PFN(x_dim,
                             y_dim,
                             Phi_layers,
                             F_layers,
                             acts,
                             opt=None,
                             l2_reg=0.0,
                             d_l1_reg=0.0,
                             d_multiplier=1.0,
                             loadfile=None):
    """Helper function to build a basic gIFN DNN in one line

    Args:
        x_dim (int): X-dimension
        y_dim (int): Y-dimension
        Phi_layers (int array): Hidden Phi layer sizes. All 4 networks use the same size
        F_layers (int array): Hidden F layer sizes. All 4 networks use the same size
        opt (Keras optimizer, optional): If provided, compiles the network. Defaults to None.
        l2_reg (float, optional): L2 regularization to apply to all weights in all 4 networks. Defaults to 0.0.
        d_l1_reg (float, optional): L1 regularization to apply to the D-Network output. Defaults to 0.0.
        loadfile (string, optional): If provided, loads in weights from a file. Defaults to None.

    Returns:
        gIFN: [description]
    """

    model_A = PFN(
        input_dim=x_dim,
        Phi_sizes=Phi_layers,
        F_sizes=F_layers,
        Phi_acts=acts,
        F_acts=acts,
        output_act='linear',
        output_dim=1,
        Phi_l2_regs=l2_reg,
        F_l2_regs=l2_reg,
        name_layers=False,
    ).model
    model_B = PFN(
        input_dim=x_dim,
        Phi_sizes=Phi_layers,
        F_sizes=F_layers,
        Phi_acts=acts,
        F_acts=acts,
        output_act='linear',
        output_dim=y_dim,
        Phi_l2_regs=l2_reg,
        F_l2_regs=l2_reg,
        name_layers=False,
    ).model
    model_D = PFN(
        input_dim=x_dim,
        Phi_sizes=Phi_layers,
        F_sizes=F_layers,
        Phi_acts=acts,
        F_acts=acts,
        output_act='linear',
        output_dim=y_dim,
        Phi_l2_regs=l2_reg,
        F_l2_regs=l2_reg,
        name_layers=False,
    ).model
    model_C = PFN(
        input_dim=x_dim,
        Phi_sizes=Phi_layers,
        F_sizes=F_layers,
        Phi_acts=acts,
        F_acts=acts,
        output_act='linear',
        output_dim=y_dim * y_dim,
        num_global_features=y_dim,
        Phi_l2_regs=l2_reg,
        F_l2_regs=l2_reg,
        name_layers=False,
    ).model

    ifn = GaussianAnsatz(model_A,
                         model_B,
                         model_C,
                         model_D,
                         d_multiplier=d_multiplier,
                         y_dim=y_dim,
                         d_l1_reg=d_l1_reg)

    # Compile
    if opt is not None:
        ifn.compile(loss=mine_loss,
                    optimizer=opt,
                    metrics=[MI, joint, marginal])

    # Load a previous model, or pretrain
    if loadfile is not None:
        ifn.built = True
        ifn.load_weights(loadfile)

    return ifn
Пример #5
0
else:
    X = X[:, :, :3]

print('Finished preprocessing')

# do train/val/test split
(X_train, X_val, X_test, Y_train, Y_val, Y_test) = data_split(X,
                                                              Y,
                                                              val=val,
                                                              test=test)

print('Done train/val/test split')
print('Model summary:')

# build architecture
pfn = PFN(input_dim=X.shape[-1], Phi_sizes=Phi_sizes, F_sizes=F_sizes)

# train model
pfn.fit(X_train,
        Y_train,
        epochs=num_epoch,
        batch_size=batch_size,
        validation_data=(X_val, Y_val),
        verbose=1)

# get predictions on test data
preds = pfn.predict(X_test, batch_size=1000)

# get ROC curve if we have sklearn
if roc_curve:
    pfn_fp, pfn_tp, threshs = roc_curve(Y_test[:, 1], preds[:, 1])
            kwargs.update({'kernel_regularizer': l2(l2_reg), 'bias_regularizer': l2(l2_reg)})

        # a new dense layer
        new_layer = _apply_act(act, Dense(s, **kwargs)(dense_layers[-1]))

        # apply dropout (does nothing if dropout is zero)
        if dropout > 0.:
            new_layer = Dropout(dropout)(new_layer)

        # apply new layer to previous and append to list
        dense_layers.append(new_layer)

    return dense_layers

# get two PFNs for muons and electrons
muon_pfn = PFN(input_dim=5, Phi_sizes=[100, 100], F_sizes=[50], compile=False, name_layers=False)
electron_pfn = PFN(input_dim=5, Phi_sizes=[100, 100], F_sizes=[50], compile=False, name_layers=False)

# make some dense layers (including an input layer) for the jet variables dnn
jet_vars_dnn = make_dense_layers([100, 100], input_shape=(10,))

# a list of the input layers
inputs = muon_pfn.inputs + electron_pfn.inputs + [jet_vars_dnn[0]]

# the concatenated layer
concat_layer = concatenate([muon_pfn.F[-1], electron_pfn.F[-1], jet_vars_dnn[-1]])

# a DNN to combine things on the backend
combo_dnn = make_dense_layers([100, 100], concat_layer)

# a binary-classification-like output
Пример #7
0
test = 0.2
Phi_sizes, F_sizes = (200, 200, 256), (200, 200, 200)
num_epoch = 1000
(X_train, X_val, X_test, Y_train, Y_val, Y_test) = data_split(X,
                                                              Y,
                                                              val=val,
                                                              test=test)
es = EarlyStopping(monitor='val_auc',
                   mode='max',
                   verbose=1,
                   patience=20,
                   restore_best_weights=True)
#mc = ModelCheckpoint('best_model.h5', monitor='val_auc', mode='max', verbose=1, save_best_only=True)
pfn = PFN(input_dim=3,
          Phi_sizes=Phi_sizes,
          F_sizes=F_sizes,
          metrics=['acc', auc],
          latent_dropout=0.2,
          F_dropouts=0.2)
history = pfn.fit(X_train,
                  Y_train,
                  epochs=num_epoch,
                  batch_size=batch_size,
                  validation_data=(X_val, Y_val),
                  verbose=1,
                  callbacks=[es])

#dependencies = {
#  'auc': tf.keras.metrics.AUC(name="auc")
#}
#saved_model = load_model('best_model.h5', custom_objects=dependencies)
#preds = saved_model.predict([z_test, p_test], batch_size=1000)
Пример #8
0
from energyflow.utils import data_split, remap_pids, to_categorical
from glob import glob
from keras.utils import plot_model

MODEL_DIR = "./DeepSets/"

if __name__ == "__main__":
    # Specify number of particles to use and number of features
    nParticles = 60
    # nFeatures=51
    nFeatures = 47

    Phi_sizes, F_sizes = (50, 50, 12), (50, 50, 50)
    model = PFN(input_dim=nFeatures,
                Phi_sizes=Phi_sizes,
                F_sizes=F_sizes,
                output_dim=1,
                output_act='sigmoid',
                loss='binary_crossentropy')
    plot_model(model, to_file='deepset.png')

    utils = Utilities(nParticles)

    # Build the first training dataset
    X_train, Y, W_train, MVA_train = utils.BuildBatch()
    print(MVA_train.shape)

    for epoch in range(10000):
        # Shuffle loaded datasets and begin
        inds = range(len(X_train))
        np.random.shuffle(inds)
        X_epoch, Y_epoch, W_epoch, MVA_epoch = X_train[inds], Y[inds], W_train[
Пример #9
0
def mk_PFN(Phi_sizes=(128, 128),
           F_sizes=(128, 128),
           use_EFN=False,
           center_jets=True,
           latent_dropout=0.,
           randomize_az=False):

    # set up either an Energyflow or Particleflow network from the
    # energyflow package
    if use_EFN:
        efn_core = EFN(input_dim=3,
                       Phi_sizes=Phi_sizes,
                       F_sizes=F_sizes,
                       loss='binary_crossentropy',
                       output_dim=1,
                       output_act='sigmoid',
                       latent_dropout=latent_dropout)
    else:
        pfn_core = PFN(input_dim=4,
                       Phi_sizes=Phi_sizes,
                       F_sizes=F_sizes,
                       loss='binary_crossentropy',
                       output_dim=1,
                       output_act='sigmoid',
                       latent_dropout=latent_dropout)

    # input: constituents' pt/eta/phi
    pfn_in = layers.Input((defs.N_CONST, 3))
    x = pfn_in

    # optionally, center the constituents about the jet axis,
    # then apply a random azimutal rotation about that axis
    if center_jets:
        x = util.CenterJet()(x)
        if randomize_az:
            x = util.RandomizeAz()(x)

    # format the centered constituents by masking empty items and
    # converting phi->sin(phi),cos(phi).
    # This is done to prevent adversarial perturbations causing phi
    # to either wrap around or go out of range.
    x = layers.Lambda(_format_constituents, name='phi_format')(x)

    if use_EFN:
        # if we are using the EFN model, we have to split up
        # the pT and angular parts of the constituents
        def getpt(x):
            # return just the pT for each constituent
            xpt, _, _, _ = tf.split(x, 4, axis=-1)
            return xpt

        def getangle(x):
            # return the eta, sin(phi), cos(phi) for each constituent
            _, xeta, xphi_s, xphi_c = tf.split(x, 4, axis=-1)
            return tf.concat([xeta, xphi_s, xphi_c], axis=-1)

        xpt = layers.Lambda(getpt)(x)
        xangle = layers.Lambda(getangle)(x)

        # apply the PFN model to the pt and angular inputs
        pfn_out = efn_core.model([xpt, xangle])

        # also the EFN model comes with an extra tensor dimension
        # which we need to remove:
        pfn_out = layers.Lambda(lambda x: tf.squeeze(x, axis=-1))(pfn_out)
        print(pfn_out.shape)
    else:
        pfn_out = pfn_core.model(x)
        print(pfn_out.shape)

    pfn = Model(pfn_in, pfn_out)
    pfn.compile(optimizer='adam', loss='binary_crossentropy')

    return pfn
Пример #10
0
def DeepSet(nParticles,nFeatures, Phi_sizes= (50, 50, 12), F_sizes=(50, 50, 50)):

    model = PFN(input_dim=nFeatures, Phi_sizes=Phi_sizes, F_sizes=F_sizes, output_dim=1, output_act='sigmoid', loss='binary_crossentropy')
    plot_model(model, to_file='deepset.png')
    return model