def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.state = 0 #State0 try to find exit, State1 bomb is planted run away self.bombTimer = 0 self.bombX = 0 self.bombY = 0 self.bombActive = 0
def restart(self, wrld): CharacterEntity.__init__(self, self.name, self.avatar, self.startX, self.startY) self.agentX, self.angetY = self.startX, self.startY self.agentLX, self.agentLY = self.startX, self.startY self.bombTimer = 11 self.bombX, self.bombY = -1, -1
def __init__(self, n, d, x, y, wrld): CharacterEntity.__init__(self, n, d, x, y) #self.pathMaker = Astar(wrld) #self.path = self.pathMaker.findpathtoend(self.x, self.y) #print('path length: ', len(self.path)) self.path = self.makepath(wrld) self.i = 0
def __init__( self, name, avatar, x, y, ): CharacterEntity.__init__(self, name, avatar, x, y) self.exit = None
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.state = "go" self.hasMoved = False self.dxdy = (-1, -1) self.bomb_locations = [(7, 2, True), (7, 6, True), (7, 10, True), (7, 12, True), (7, 18, False)] self.location_index = 0
def __init__(self, name, player, x, y, weights): CharacterEntity.__init__(self, name, player, x, y) self.learning_rate = 0.2 self.discount_factor = 0.9 self.epsilon = 0.2 self.last_q = 0 self.current_action = (0, 0) self.weights = weights self.current_pos = (0, 0) self.last_pos = (0, 0)
def __init__( self, name, avatar, x, y, ): CharacterEntity.__init__(self, name, avatar, x, y) self.bomb_timer = 0 self.loc = []
def __init__(self, name, avatar, x, y, varient=1): CharacterEntity.__init__(self, name, avatar, x, y) self.varient = varient self.path = [] # (x,y) tuple for location of the exit self.goal = None self.bombs = [] self.toBomb = (4, 2) self.newbomb_flag = 0 self.old_state = None self.timer = -1 self.state = STATE_SNEAK
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.learning_limit = 100 self.learning_step = self.learning_limit self.is_learning = False self.discount = 0.9 self.epsilon_start = 0.95 self.epsilon = self.epsilon_start self.epsilon_rate = 0.3 # How fast should epsilon decrease self.path = [] self.path_search = 0 self.danger_radius = 5 seed(10)
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.name = name self.avatar = avatar self.startX, self.startY = x, y self.wrld = None self.bombPlaced = False self.bombTimer = 11 self.agentX, self.agentY = self.startX, self.startY self.agentLX, self.agentLY = self.startX, self.startY self.exitX, self.exitY = -1, -1 self.bombX, self.bombY = -1, -1 self.locations = set('0,0')
def __init__(self, name, avatar, x, y, inter): CharacterEntity.__init__(self, name, avatar, x, y) self.name = name self.avatar = avatar self.startX, self.startY = x, y self.wrld = None self.bombPlaced = False self.bombTimer = 11 self.agentX, self.agentY = self.startX, self.startY self.agentLX, self.agentLY = self.startX, self.startY self.exitX, self.exitY = -1, -1 self.bombX, self.bombY = -1, -1 self.inter = inter self.lastState = '' self.QTable = "" self.readQTable() self.nextAction = 0
def __init__(self,name,avatar,x,y, qFile, learn): CharacterEntity.__init__(self,name,avatar,x,y) self.name = name self.avatar = avatar self.startX, self.startY = x,y self.wrld = None self.bombPlaced = False self.bombTimer = 10 self.agentX, self.agentY = self.startX,self.startY self.agentLX,self.agentLY = self.startX,self.startY self.exitX, self.exitY = -1,-1 self.bombX, self.bombY = -1, -1 self.lastState = '' self.lastAction = '' self.q_file = qFile self.q_table =self.init_q(qFile) self.learn = learn
def __init__(self, name, avatar, x, y, q_learner, train, iteration): CharacterEntity.__init__(self, name, avatar, x, y) self.q_learner = q_learner self.train = train self.iteration = iteration self.epsilon = 1 / (self.iteration + 1) ** 0.5 self.prev_wrld = None self.best_wrld = None self.iterations = 0 self.qLearning = False self.bomb = False self.state = "go" self.dxdy = (-1, -1) self.bomb_locations = [(0, 2, True), (0, 3, True),(1, 3, True), (2, 3,True), (3, 3, True),(4, 3, True),(5, 3, True), (7, 3, True), (7, 10, True), (4, 9, False), (7, 12, True), (7, 18, False)] self.location_index = 0
def __init__(self, name, avatar, x, y, active_features, decay, lr): CharacterEntity.__init__(self, name, avatar, x, y) # Weights turned on (if 0 in 6th spot 6th feature turned off) self.on = [0.0] * self.NUM_FEATURES for feat_num, weight in active_features: self.on[feat_num] = weight self.weightArray = self.on # Array of weights self.featureArray = [0.0] * self.NUM_FEATURES # Array of features self.gamma = 0.9 # Reward Decay self.lr = lr # Learning Rate self.decay = decay # Decay self.wins = 0 # Number of wins so far self.losses = 0 # Number of losses so far self.debug = False # Turn off to reduce prints self.oldState1 = self.on # Used to save a state to revert back to later self.oldState2 = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -5.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] # Used to save rush state self.state = 1 # State the bot is currently in self.monster_aggro_range = 2
def __init__(self, name, avatar, x, y, q_learner, train, iteration, stateMachine=False): CharacterEntity.__init__(self, name, avatar, x, y) self.q_learner = q_learner self.train = train self.iteration = iteration self.epsilon = 1 / (self.iteration + 1)**0.5 self.prev_wrld = None self.best_wrld = None self.count = 0 self.iterations = 0 self.pastMoves = [] self.identity = "A-Star" self.stateMachine = stateMachine
def __init__(self, name, avatar, x, y, sensitivity): CharacterEntity.__init__(self, name, avatar, x, y) # sensitivity is a number that weight the distance to monster evaluation # higher value means stay further away from nearest monster (usually 100~1000) self.sensitivity = sensitivity
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.ticked = False
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.ticked = False self.oldwrld = None self.currwrld = None
def __init__(self, name, avatar, x, y, scenario_num, variant_num): CharacterEntity.__init__(self, name, avatar, x, y) self.scenario_num = scenario_num self.variant_num = variant_num
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.monster_dist = 1 self.best = 10000000 self.worst = -self.best * 1000 self.max_depth = 2
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y)
def __init__(self, name, avatar, x, y, d): CharacterEntity.__init__(self, name, avatar, x, y) self.sensitivity = d # d is distance to monster ,higher means stay further away from a monster near u
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.first = True self.path = None
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.state = 'm' self.bomb_at = []
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.reward = 0 self.q_learn = Qlearning(0)
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.state = "aStar"
def __init__(self, name, avatar, x, y): CharacterEntity.__init__(self, name, avatar, x, y) self.need_search = True self.movelist = []