Пример #1
0
def create_online_env(env, hyperparams, scene_idx, init_timestep):
    test_scene = env.scenes[scene_idx]

    online_scene = Scene(timesteps=init_timestep + 1,
                         map=test_scene.map,
                         dt=test_scene.dt)
    online_scene.nodes = test_scene.get_nodes_clipped_at_time(
        timesteps=np.arange(
            init_timestep - hyperparams['maximum_history_length'],
            init_timestep + 1),
        state=hyperparams['state'])
    online_scene.robot = test_scene.robot
    online_scene.calculate_scene_graph(
        attention_radius=env.attention_radius,
        edge_addition_filter=hyperparams['edge_addition_filter'],
        edge_removal_filter=hyperparams['edge_removal_filter'])

    return Environment(node_type_list=env.node_type_list,
                       standardization=env.standardization,
                       scenes=[online_scene],
                       attention_radius=env.attention_radius,
                       robot_type=env.robot_type)
Пример #2
0
        env = Environment(node_type_list=['PARTICLE'], standardization=standardization)
        attention_radius = dict()
        attention_radius[(env.NodeType.PARTICLE, env.NodeType.PARTICLE)] = 10.0
        env.attention_radius = attention_radius
        env.robot_type = env.NodeType.PARTICLE
        scenes = []
        data_dict_path = os.path.join('../processed', '_'.join([desired_source, data_class]) + '_2_robot.pkl')
        # open dataset
        for scenario in dataset[data_class]:
            max_timesteps = len(scenario[0][('position', 'x')])
            scene = Scene(timesteps=max_timesteps, dt=dt, name=desired_source + "_" + data_class)
            for node_id, data_dict in enumerate(scenario):
                node_data = pd.DataFrame(data_dict, columns=data_columns)
                node = Node(node_type=env.NodeType.PARTICLE, node_id=node_id, data=node_data)
                node.first_timestep = 0

                if node_id == 0:
                    node.is_robot = True
                    scene.robot = node

                scene.nodes.append(node)

            scenes.append(scene)
        print(f'Processed {len(scenes):.2f} scene for data class {data_class}')

        env.scenes = scenes

        if len(scenes) > 0:
            with open(data_dict_path, 'wb') as f:
                dill.dump(env, f, protocol=dill.HIGHEST_PROTOCOL)
Пример #3
0
def process_scene(sample_token, processed_sample_tokens, env, nusc, helper,
                  data_path, data_class, half_dt, dynamic):
    data = pd.DataFrame(columns=[
        'frame_id', 'type', 'node_id', 'robot', 'x', 'y', 'z', 'length',
        'width', 'height', 'heading'
    ])

    samples = aggregate_samples(nusc,
                                start=sample_token,
                                data_class=data_class)

    attribute_dict = defaultdict(set)

    frame_id = 0
    for sample in samples:
        annotation_tokens = sample['anns']
        for annotation_token in annotation_tokens:
            annotation = nusc.get('sample_annotation', annotation_token)
            category = annotation['category_name']
            if len(annotation['attribute_tokens']):
                attribute = nusc.get('attribute',
                                     annotation['attribute_tokens'][0])['name']
            else:
                if 'vehicle' in category:
                    attribute = ''
                else:
                    continue

            if 'pedestrian' in category and 'stroller' not in category and 'wheelchair' not in category:
                our_category = env.NodeType.PEDESTRIAN
            elif 'vehicle' in category and 'bicycle' not in category and 'motorcycle' not in category:  # and 'parked' not in attribute:
                our_category = env.NodeType.VEHICLE
            else:
                continue

            attribute_dict[annotation['instance_token']].add(attribute)

            data_point = pd.Series({
                'frame_id':
                frame_id,
                'type':
                our_category,
                'node_id':
                annotation['instance_token'],
                'robot':
                False,
                'x':
                annotation['translation'][0],
                'y':
                annotation['translation'][1],
                'z':
                annotation['translation'][2],
                'length':
                annotation['size'][0],
                'width':
                annotation['size'][1],
                'height':
                annotation['size'][2],
                'heading':
                Quaternion(annotation['rotation']).yaw_pitch_roll[0]
            })
            data = data.append(data_point, ignore_index=True)

        # Ego Vehicle
        our_category = env.NodeType.VEHICLE
        sample_data = nusc.get('sample_data', sample['data']['CAM_FRONT'])
        annotation = nusc.get('ego_pose', sample_data['ego_pose_token'])
        data_point = pd.Series({
            'frame_id':
            frame_id,
            'type':
            our_category,
            'node_id':
            'ego',
            'robot':
            True,
            'x':
            annotation['translation'][0],
            'y':
            annotation['translation'][1],
            'z':
            annotation['translation'][2],
            'length':
            4,
            'width':
            1.7,
            'height':
            1.5,
            'heading':
            Quaternion(annotation['rotation']).yaw_pitch_roll[0],
            'orientation':
            None
        })
        data = data.append(data_point, ignore_index=True)

        processed_sample_tokens.add(sample['token'])
        frame_id += 1

    if len(data.index) == 0:
        return None

    data.sort_values('frame_id', inplace=True)
    max_timesteps = data['frame_id'].max()

    x_min = np.round(data['x'].min() - 50)
    x_max = np.round(data['x'].max() + 50)
    y_min = np.round(data['y'].min() - 50)
    y_max = np.round(data['y'].max() + 50)

    data['x'] = data['x'] - x_min
    data['y'] = data['y'] - y_min

    scene = Scene(timesteps=max_timesteps + 1,
                  dt=dt,
                  name=sample_token,
                  aug_func=augment,
                  sample_tokens=[sample['token'] for sample in samples],
                  x_min=x_min,
                  y_min=y_min)

    # Generate Maps
    map_name = helper.get_map_name_from_sample_token(sample_token)
    nusc_map = NuScenesMap(dataroot=data_path, map_name=map_name)

    type_map = dict()
    x_size = x_max - x_min
    y_size = y_max - y_min
    patch_box = (x_min + 0.5 * (x_max - x_min), y_min + 0.5 * (y_max - y_min),
                 y_size, x_size)
    patch_angle = 0  # Default orientation where North is up
    canvas_size = (np.round(3 * y_size).astype(int),
                   np.round(3 * x_size).astype(int))
    homography = np.array([[3., 0., 0.], [0., 3., 0.], [0., 0., 3.]])
    layer_names = [
        'lane', 'road_segment', 'drivable_area', 'road_divider',
        'lane_divider', 'stop_line', 'ped_crossing', 'stop_line',
        'ped_crossing', 'walkway'
    ]
    map_mask = (nusc_map.get_map_mask(patch_box, patch_angle, layer_names,
                                      canvas_size) * 255.0).astype(np.uint8)
    map_mask = np.swapaxes(map_mask, 1, 2)  # x axis comes first
    # PEDESTRIANS
    map_mask_pedestrian = np.stack(
        (map_mask[9], map_mask[8], np.max(map_mask[:3], axis=0)), axis=0)
    type_map['PEDESTRIAN'] = GeometricMap(data=map_mask_pedestrian,
                                          homography=homography,
                                          description=', '.join(layer_names))
    # VEHICLES
    map_mask_vehicle = np.stack(
        (np.max(map_mask[:3], axis=0), map_mask[3], map_mask[4]), axis=0)
    type_map['VEHICLE'] = GeometricMap(data=map_mask_vehicle,
                                       homography=homography,
                                       description=', '.join(layer_names))

    map_mask_plot = np.stack(
        ((np.max(map_mask[:3], axis=0) -
          (map_mask[3] + 0.5 * map_mask[4]).clip(max=255)).clip(min=0).astype(
              np.uint8), map_mask[8], map_mask[9]),
        axis=0)
    type_map['VISUALIZATION'] = GeometricMap(
        data=map_mask_plot,
        homography=homography,
        description=', '.join(layer_names))

    scene.map = type_map
    del map_mask
    del map_mask_pedestrian
    del map_mask_vehicle
    del map_mask_plot

    for node_id in pd.unique(data['node_id']):
        node_frequency_multiplier = 1
        node_df = data[data['node_id'] == node_id]

        if dynamic:
            if 'vehicle.parked' in attribute_dict[
                    node_id] or 'vehicle.stopped' in attribute_dict[node_id]:
                continue

        elif len(attribute_dict[node_id]
                 ) == 1 and 'vehicle.parked' in attribute_dict[node_id]:
            # Catching instances of vehicles that were parked and then moving, but not allowing
            # only parked vehicles through.
            continue

        if node_df['x'].shape[0] < 2:
            continue

        if not np.all(np.diff(node_df['frame_id']) == 1):
            min_index = node_df['frame_id'].min()
            max_index = node_df['frame_id'].max()
            node_df = node_df.set_index('frame_id').reindex(
                range(min_index, max_index + 1)).interpolate().reset_index()
            node_df['type'] = node_df['type'].mode()[0]
            node_df['node_id'] = node_id
            node_df['robot'] = False
            # print('Occlusion')
            # continue  # TODO Make better

        node_values = node_df[['x', 'y']].values
        x = node_values[:, 0]
        y = node_values[:, 1]
        heading = node_df['heading'].values
        if node_df.iloc[0][
                'type'] == env.NodeType.VEHICLE and not node_id == 'ego':
            # Kalman filter Agent
            vx = derivative_of(x, scene.dt)
            vy = derivative_of(y, scene.dt)
            velocity = np.linalg.norm(np.stack((vx, vy), axis=-1), axis=-1)

            filter_veh = NonlinearKinematicBicycle(dt=scene.dt,
                                                   sMeasurement=1.0)
            P_matrix = None
            for i in range(len(x)):
                if i == 0:  # initalize KF
                    # initial P_matrix
                    P_matrix = np.identity(4)
                elif i < len(x):
                    # assign new est values
                    x[i] = x_vec_est_new[0][0]
                    y[i] = x_vec_est_new[1][0]
                    heading[i] = x_vec_est_new[2][0]
                    velocity[i] = x_vec_est_new[3][0]

                if i < len(x) - 1:  # no action on last data
                    # filtering
                    x_vec_est = np.array([[x[i]], [y[i]], [heading[i]],
                                          [velocity[i]]])
                    z_new = np.array([[x[i + 1]], [y[i + 1]], [heading[i + 1]],
                                      [velocity[i + 1]]])
                    x_vec_est_new, P_matrix_new = filter_veh.predict_and_update(
                        x_vec_est=x_vec_est,
                        u_vec=np.array([[0.], [0.]]),
                        P_matrix=P_matrix,
                        z_new=z_new)
                    P_matrix = P_matrix_new

            curvature, pl, _ = trajectory_curvature(np.stack((x, y), axis=-1))
            if pl < 1.0:  # vehicle is "not" moving
                x = x[0].repeat(max_timesteps + 1)
                y = y[0].repeat(max_timesteps + 1)
                heading = heading[0].repeat(max_timesteps + 1)
            global total
            global curv_0_2
            global curv_0_1
            total += 1
            if pl > 1.0:
                if curvature > .2:
                    curv_0_2 += 1
                    node_frequency_multiplier = 3 * int(
                        np.floor(total / curv_0_2))
                elif curvature > .1:
                    curv_0_1 += 1
                    node_frequency_multiplier = 3 * int(
                        np.floor(total / curv_0_1))

        if half_dt:
            t_old = np.linspace(0, 1, x.shape[0])
            t_new = np.linspace(0, 1, 2 * x.shape[0])
            x = np.interp(t_new, t_old, x)
            y = np.interp(t_new, t_old, y)
            heading = np.interp(
                t_new, t_old, heading + np.pi, period=2 * np.pi) - np.pi

            vx = derivative_of(x, scene.dt / 2)
            vy = derivative_of(y, scene.dt / 2)
            ax = derivative_of(vx, scene.dt / 2)
            ay = derivative_of(vy, scene.dt / 2)
        else:
            vx = derivative_of(x, scene.dt)
            vy = derivative_of(y, scene.dt)
            ax = derivative_of(vx, scene.dt)
            ay = derivative_of(vy, scene.dt)

        if node_df.iloc[0]['type'] == env.NodeType.VEHICLE:
            v = np.stack((vx, vy), axis=-1)
            v_norm = np.linalg.norm(np.stack((vx, vy), axis=-1),
                                    axis=-1,
                                    keepdims=True)
            heading_v = np.divide(v,
                                  v_norm,
                                  out=np.zeros_like(v),
                                  where=(v_norm > 1.))
            heading_x = heading_v[:, 0]
            heading_y = heading_v[:, 1]

            a_norm = np.divide(ax * vx + ay * vy,
                               v_norm[..., 0],
                               out=np.zeros_like(ax),
                               where=(v_norm[..., 0] > 1.))

            if half_dt:
                d_heading = derivative_of(heading, scene.dt / 2, radian=True)
            else:
                d_heading = derivative_of(heading, scene.dt, radian=True)

            data_dict = {
                ('position', 'x'):
                x,
                ('position', 'y'):
                y,
                ('velocity', 'x'):
                vx,
                ('velocity', 'y'):
                vy,
                ('velocity', 'norm'):
                np.linalg.norm(np.stack((vx, vy), axis=-1), axis=-1),
                ('acceleration', 'x'):
                ax,
                ('acceleration', 'y'):
                ay,
                ('acceleration', 'norm'):
                a_norm,
                ('heading', 'x'):
                heading_x,
                ('heading', 'y'):
                heading_y,
                ('heading', '°'):
                heading,
                ('heading', 'd°'):
                d_heading
            }
            node_data = pd.DataFrame(data_dict, columns=data_columns_vehicle)
        else:
            data_dict = {
                ('position', 'x'): x,
                ('position', 'y'): y,
                ('velocity', 'x'): vx,
                ('velocity', 'y'): vy,
                ('acceleration', 'x'): ax,
                ('acceleration', 'y'): ay
            }
            node_data = pd.DataFrame(data_dict,
                                     columns=data_columns_pedestrian)

        node = Node(node_type=node_df.iloc[0]['type'],
                    node_id=0 if node_id == 'ego' else abs(hash(node_id)),
                    data=node_data,
                    frequency_multiplier=node_frequency_multiplier,
                    description=node_id)

        node.first_timestep = node_df['frame_id'].iloc[0]
        if half_dt:
            node.first_timestep *= 2

        if node_df.iloc[0]['robot'] == True:
            node.is_robot = True
            scene.robot = node

        scene.nodes.append(node)

    if half_dt:
        # We are interpolating to make the overall dt half of what it was.
        scene.dt /= 2.0
        scene.timesteps *= 2

    return scene
Пример #4
0
def augment_scene(scene, angle):
    def rotate_pc(pc, alpha):
        M = np.array([[np.cos(alpha), -np.sin(alpha)],
                      [np.sin(alpha), np.cos(alpha)]])
        return M @ pc

    data_columns_vehicle = pd.MultiIndex.from_product(
        [['position', 'velocity', 'acceleration', 'heading'], ['x', 'y']])
    data_columns_vehicle = data_columns_vehicle.append(
        pd.MultiIndex.from_tuples([('heading', '°'), ('heading', 'd°')]))
    data_columns_vehicle = data_columns_vehicle.append(
        pd.MultiIndex.from_product([['velocity', 'acceleration'], ['norm']]))

    data_columns_pedestrian = pd.MultiIndex.from_product(
        [['position', 'velocity', 'acceleration'], ['x', 'y']])

    scene_aug = Scene(timesteps=scene.timesteps,
                      dt=scene.dt,
                      name=scene.name,
                      non_aug_scene=scene)

    alpha = angle * np.pi / 180

    for node in scene.nodes:
        if node.type == 'PEDESTRIAN':
            x = node.data.position.x.copy()
            y = node.data.position.y.copy()

            x, y = rotate_pc(np.array([x, y]), alpha)

            vx = derivative_of(x, scene.dt)
            vy = derivative_of(y, scene.dt)
            ax = derivative_of(vx, scene.dt)
            ay = derivative_of(vy, scene.dt)

            data_dict = {
                ('position', 'x'): x,
                ('position', 'y'): y,
                ('velocity', 'x'): vx,
                ('velocity', 'y'): vy,
                ('acceleration', 'x'): ax,
                ('acceleration', 'y'): ay
            }

            node_data = pd.DataFrame(data_dict,
                                     columns=data_columns_pedestrian)

            node = Node(node_type=node.type,
                        node_id=node.id,
                        data=node_data,
                        first_timestep=node.first_timestep)
        elif node.type == 'VEHICLE':
            x = node.data.position.x.copy()
            y = node.data.position.y.copy()

            heading = getattr(node.data.heading, '°').copy()
            heading += alpha
            heading = (heading + np.pi) % (2.0 * np.pi) - np.pi

            x, y = rotate_pc(np.array([x, y]), alpha)

            vx = derivative_of(x, scene.dt)
            vy = derivative_of(y, scene.dt)
            ax = derivative_of(vx, scene.dt)
            ay = derivative_of(vy, scene.dt)

            v = np.stack((vx, vy), axis=-1)
            v_norm = np.linalg.norm(np.stack((vx, vy), axis=-1),
                                    axis=-1,
                                    keepdims=True)
            heading_v = np.divide(v,
                                  v_norm,
                                  out=np.zeros_like(v),
                                  where=(v_norm > 1.))
            heading_x = heading_v[:, 0]
            heading_y = heading_v[:, 1]

            data_dict = {
                ('position', 'x'):
                x,
                ('position', 'y'):
                y,
                ('velocity', 'x'):
                vx,
                ('velocity', 'y'):
                vy,
                ('velocity', 'norm'):
                np.linalg.norm(np.stack((vx, vy), axis=-1), axis=-1),
                ('acceleration', 'x'):
                ax,
                ('acceleration', 'y'):
                ay,
                ('acceleration', 'norm'):
                np.linalg.norm(np.stack((ax, ay), axis=-1), axis=-1),
                ('heading', 'x'):
                heading_x,
                ('heading', 'y'):
                heading_y,
                ('heading', '°'):
                heading,
                ('heading', 'd°'):
                derivative_of(heading, scene.dt, radian=True)
            }

            node_data = pd.DataFrame(data_dict, columns=data_columns_vehicle)

            node = Node(node_type=node.type,
                        node_id=node.id,
                        data=node_data,
                        first_timestep=node.first_timestep,
                        is_robot=node.is_robot,
                        non_aug_node=node,
                        description=node.description)

        if node.is_robot:
            scene_aug.robot = node

        scene_aug.nodes.append(node)
    return scene_aug