Пример #1
0
def soilmoisture_fingerprints(mask,name=None):
    depths = ["30cm","2m","pdsi"]
    letters = ["(a): ","(b): ","(c): "]
    pcs = []
    pclabels = []
    for depth in depths:
        i=depths.index(depth)
        plt.subplot(2,2,i+1)
        sm = soilmoisture(depth,mask=mask)
        solver = Eof(MV.average(sm,axis=0))
        fac = da.get_orientation(solver)
        if name is None:
            m=landplot(fac*solver.eofs()[0],vmin=-.1,vmax=.1)
            plt.colorbar(orientation='horizontal',label='EOF loading')
        else:
            m=plot_regional(fac*solver.eofs()[0],name,vmin=-.1,vmax=.1)
            m.drawcountries()
        m.drawcoastlines(color='gray')
        
        
        plt.title(letters[i]+depth+" fingerprint")
        pcs+=[fac*solver.pcs()[:,0]]

    
    plt.subplot(2,2,4)
    for i in range(3):
        time_plot(pcs[i],label=depths[i])
    plt.legend(loc=0)
    plt.title("(d): Principal Components")
    plt.xlabel("Time")
    plt.ylabel("Temporal amplitude")
Пример #2
0
def scratch(good):
    #TO DO:
    # mask OWDA, NADA, MADA regions


    f=cdms.open("../DROUGHT_ATLAS/PROCESSED/OWDA.nc")
    owda=f("pdsi")
    f.close()
    f = cdms.open("../DROUGHT_ATLAS/CMIP5/pdsi.ensemble.hist.rcp85.nc")
    h85=f("pdsi")
    good = get_rid_of_bad(h85)
    

    owda_region = cdutil.region.domain(latitude=(np.min(owda.getLatitude()[:]),np.max(owda.getLatitude()[:])),longitude= (np.min(owda.getLongitude()[:]),np.max(owda.getLongitude()[:])))
    
    ow = MV.average(good(owda_region),axis=0)
    
    owsolver = Eof(MV.average(sc.mask_data(good(owda_region),owda_regrid[-1].mask),axis=0))
    ow_fingerprint = owsolver.eofs()[0]
    
    owda_regrid = owda.regrid(ow.getGrid(),regridTool='regrid2') 
    owda_regrid_mask=sc.mask_data(owda_regrid,ow_fingerprint.mask)


    
    
    nada_region = cdutil.region.domain(latitude=(np.min(nada.getLatitude()[:]),np.max(nada.getLatitude()[:])),longitude= (np.min(nada.getLongitude()[:]),np.max(nada.getLongitude()[:])))



    nasolver = Eof(MV.average(good(nada_region),axis=0))
    na_fingerprint = nasolver.eofs()[0] 

    nada_regrid = nada.regrid(na_fingerprint.getGrid(),regridTool='regrid2') 
    nada_regrid_mask=sc.mask_data(nada_regrid,na_fingerprint.mask)
Пример #3
0
def soilmoisture_fingerprints(mask, name=None, fortalk=False):
    Fingerprints = {}
    depths = ["pdsi", "30cm", "2m"]
    if fortalk:
        letters = ["", "", ""]
    else:
        letters = ["(a): ", "(b): ", "(c): "]
    pcs = []
    pclabels = []
    for depth in depths:
        i = depths.index(depth)
        if fortalk:
            plt.figure()
        else:
            plt.subplot(2, 2, i + 1)
        sm = soilmoisture(depth, mask=mask)
        solver = Eof(MV.average(sm, axis=0), weights='area')
        Fingerprints[depth] = solver
        fac = da.get_orientation(solver)
        if name is None:
            m = b.landplot(fac * solver.eofs()[0], vmin=-.1, vmax=.1)
            plt.colorbar(orientation='horizontal', label='EOF loading')
        else:
            m = b.plot_regional(fac * solver.eofs()[0],
                                name,
                                vmin=-.1,
                                vmax=.1)
            m.drawcountries()
        m.drawcoastlines(color='gray')

        if depth is not "pdsi":
            plt.title(letters[i] + depth + " fingerprint")
        else:
            plt.title(letters[i] + " PDSI fingerprint")
        pcs += [fac * solver.pcs()[:, 0]]

    if fortalk:
        plt.figure()
    else:
        plt.subplot(2, 2, 4)
    for i in range(3):
        if depths[i] == "pdsi":
            label = "PDSI"
        else:
            label = depths[i]
        time_plot(pcs[i], label=label, lw=3, color=cm.copper(i / 2.))
    plt.legend(loc=0)
    plt.title("(d): Principal Components")
    plt.xlabel("Time")
    plt.ylabel("Temporal amplitude")
    plt.xlim(1900, 2100)
    return Fingerprints
Пример #4
0
def compare_pre_post_1100_noise(X,L=31,latbounds=None):
    time1=('1100-1-1','1399-12-31')
    c1=cm.Purples(.8)
    time2=('1400-1-1','2005-12-31')
    if latbounds is not None:
        obs=X.obs(latitude=latbounds)
        mma = MV.average(X.model(latitude=latbounds),axis=0)
        mma = mask_data(mma,obs[0].mask)
        solver = Eof(mma)
        obs = mask_data(obs,solver.eofs()[0].mask)
        truncnoise=solver.projectField(obs)[:,0]*da.get_orientation(solver)
        noisy1=truncnoise(time=time1)
        noisy2=truncnoise(time=time2)
    else:
        noisy1=X.noise(time=time1)
        noisy2=X.noise(time=time2)
    c2=cm.viridis(.1)
    plt.subplot(121)
    Plotting.Plotting.time_plot(noisy1,c=c1)
    Plotting.Plotting.time_plot(noisy2,c=c2)
    plt.ylabel("Projection")
    plt.title("(a): Noise time series")
    plt.subplot(122)
   
    plt.hist(b.bootstrap_slopes(noisy1,L),color=c1,normed=True,alpha=.5)
    da.fit_normals_to_data(b.bootstrap_slopes(noisy1,L),c=c1,label="1100-1400")
    plt.hist(b.bootstrap_slopes(noisy2,L),color=c2,normed=True,alpha=.5)
    da.fit_normals_to_data(b.bootstrap_slopes(noisy2,L),c=c2,label="1400-2005")
    plt.legend()
    plt.title("(b): 31-year trend distributions")
    return np.std(b.bootstrap_slopes(noisy1,L)),np.std(b.bootstrap_slopes(noisy2,L))
Пример #5
0
    def project_soilmoisture(self, dataset):
        mask = self.mask
        self.OBS_PROJECTIONS[dataset] = {}
        surf, root = standardize_soilmoisture(dataset)

        surfsolver = Eof(mask_data(self.mma["30cm"], mask), weights='area')
        surfmask = mask_data(surf, surfsolver.eofs()[0].mask)
        surfsolver = Eof(mask_data(self.mma["30cm"], surfmask[-1].mask),
                         weights='area')
        surfanom = surfmask - MV.average(surfmask, axis=0)
        self.OBS_PROJECTIONS[dataset]["30cm"] = surfsolver.projectField(
            surfanom)[:, 0] * da.get_orientation(surfsolver)

        rootsolver = Eof(mask_data(self.mma["2m"], mask), weights='area')
        rootmask = mask_data(root, rootsolver.eofs()[0].mask)
        rootsolver = Eof(mask_data(self.mma["2m"], rootmask[-1].mask),
                         weights='area')
        rootanom = rootmask - MV.average(rootmask, axis=0)
        self.OBS_PROJECTIONS[dataset]["2m"] = rootsolver.projectField(
            rootanom)[:, 0] * da.get_orientation(rootsolver)
def get_EOFs(var1, num=3, scaling=2):
    lat = var1.getAxis(1)
    lon = var1.getAxis(2)
    var = MV.array(var1 - np.mean(var1, axis=0))
    var.setAxis(1, lat)
    var.setAxis(2, lon)
    solver = Eof(var, weights='area')
    eofs = solver.eofs(neofs=num, eofscaling=scaling)
    pc = solver.pcs(npcs=num, pcscaling=scaling)
    vari = solver.varianceFraction(num)
    eigv = solver.eigenvalues(num)
    return eofs, pc, vari, eigv
Пример #7
0
    def project_dai_on_solver(self,start='1970-1-1'):

        f = cdms.open("../DROUGHT_ATLAS/OBSERVATIONS/DAI_selfcalibrated.nc")
        dai_jja=f("pdsi")
        f.close()
        dai_jja_mask = mask_data(dai_jja,self.obs[0].mask)(time=(start,'2018-12-31'))
        newmask = np.prod(~dai_jja_mask.mask,axis=0)
        dai_jja_mask = mask_data(dai_jja_mask,newmask==0)
        solver = Eof(mask_data(self.mma,newmask==0))
        dai_jja_mask = mask_data(dai_jja_mask,solver.eofs()[0].mask)
        fac = da.get_orientation(solver)
        return solver.projectField(dai_jja_mask)[:,0]*fac
Пример #8
0
    def __init__(self,data,proj="moll",typ="clim",fix_colorbar = True,**kwargs):
       # matplotlib.rcParams["backend"]="TkAgg"

        if data.id.find("pr")==0:
            lab = "mm/day/decade"
        else:
            lab = "K/decade"
        if len(data.shape) == 4:
            self.avg = MV.average(data,axis=0)
            self.data = data
        else:
            self.avg = data
            self.data = MV.array(data.asma()[np.newaxis])
            for i in range(3):
                self.data.setAxis(i+1,data.getAxis(i))
        
    
        if typ == "slopes":
            self.plotdata= genutil.statistics.linearregression(self.avg,nointercept=1)*3650.
        elif typ == "clim":
            self.plotdata = MV.average(self.avg,axis=0)
        elif typ == "eof":
            eofdata = cdms_clone(self.avg.anom(axis=0),self.avg)
            solver = Eof(eofdata)
            fac = get_orientation(solver)
            self.plotdata = solver.eofs()[0]*fac
        
        if fix_colorbar:
            a = max([np.abs(np.min(self.plotdata)),np.abs(np.max(self.plotdata))])
            vmin = -a
            vmax = a
        else:
            vmin=None
            vmax = None
       
        self.m = bmap(self.plotdata,alpha=1,projection=proj,vmin=vmin,vmax=vmax)
        self.m.drawcoastlines()
        plt.set_cmap(cm.RdBu_r)
        cbar=plt.colorbar(orientation="horizontal")
        cbar.set_label(lab)
        self.fig = plt.gcf()
        self.ax = plt.gca()
        self.lat = data.getLatitude()
        self.latbounds = data.getLatitude().getBounds()
        self.lon = data.getLongitude()
        self.cid = self.fig.canvas.mpl_connect('button_press_event',self.onclick)
        self.cid2 = self.fig.canvas.mpl_connect("key_press_event",self.onpress)
        self.key = "o"
        self.stars = []
        self.figs=[]
        self.xlim = self.ax.get_xlim()
        self.ylim = self.ax.get_ylim()
Пример #9
0
    def project_cru_on_solver(self, start='1970-1-1', solver=None):

        f = cdms.open("../DROUGHT_ATLAS/OBSERVATIONS/CRU_selfcalibrated.nc")
        cru_jja = f("pdsi")
        f.close()
        cru_jja_mask = mask_data(cru_jja,
                                 self.obs[0].mask)(time=(start, '2018-12-31'))
        newmask = np.prod(~cru_jja_mask.mask, axis=0)
        cru_jja_mask = mask_data(cru_jja_mask, newmask == 0)
        if solver is None:
            solver = Eof(mask_data(self.mma, newmask == 0), weights='area')
        cru_jja_mask = mask_data(cru_jja_mask, solver.eofs()[0].mask)
        fac = da.get_orientation(solver)
        return solver.projectField(cru_jja_mask)[:, 0] * fac
Пример #10
0
def soilmoisture_projections():

    f = cdms.open(
        "../DROUGHT_ATLAS/OBSERVATIONS/GLEAM_soilmoisture_summerseason.nc")
    root = f("smroot")
    surf = f("smsurf")

    ALL = b.DroughtAtlas("ALL_ANZDA")
    mask = ALL.obs[0].mask
    sm = b.SoilMoisture(mask)

    surfsolver = Eof(b.mask_data(sm.mma["30cm"], mask), weights='area')
    surfmask = b.mask_data(surf, surfsolver.eofs()[0].mask)
    surfsolver = Eof(b.mask_data(sm.mma["30cm"], surfmask[-1].mask),
                     weights='area')
    surfanom = surfmask - MV.average(surfmask, axis=0)

    time_plot(surfsolver.projectField(surfanom)[:, 0],
              lw=3,
              color=cm.copper(.2))
    plt.title("Surface soil moisture")
    plt.ylabel("Projection on fingerprint")

    plt.figure()

    rootsolver = Eof(b.mask_data(sm.mma["2m"], mask), weights='area')
    rootmask = b.mask_data(root, rootsolver.eofs()[0].mask)
    rootsolver = Eof(b.mask_data(sm.mma["2m"], rootmask[-1].mask),
                     weights='area')
    rootanom = rootmask - MV.average(rootmask, axis=0)

    time_plot(rootsolver.projectField(rootanom)[:, 0],
              lw=3,
              color=cm.copper(.8))
    plt.title("Root soil moisture")
    plt.ylabel("Projection on fingerprint")
Пример #11
0
def regional_DA(OWDA,
                region,
                start_time=None,
                typ='fingerprint',
                return_noise=False):
    if start_time is None:
        start_time = cdtime.comptime(2000, 1, 1)
    times = np.arange(10, 76)
    modeldata = mask_data(OWDA.model(region), OWDA.obs(region)[0].mask)
    if typ == 'fingerprint':
        mma = MV.average(modeldata, axis=0)
        solver = Eof(mma, weights='area')

        to_proj = mask_data(modeldata, solver.eofs()[0].mask)
        P = MV.zeros(to_proj.shape[:2])
        for i in range(to_proj.shape[0]):
            tp = to_proj[i]
            mma_mask = mask_data(mma, tp[0].mask)
            solver = Eof(mma_mask, weights='area')
            fac = da.get_orientation(solver)
            P[i] = solver.projectField(tp)[:, 0] * fac
        P.setAxisList(to_proj.getAxisList()[:2])
        noise = solver.projectField(OWDA.obs(region))[:, 0]
    else:
        P = cdutil.averager(modeldata, axis='xy')
        noise = cdutil.averager(OWDA.obs(region), axis='xy')
    if return_noise:
        return P, noise
    else:
        nmod, nyears = P.shape
        TOE = MV.zeros((nmod, len(times)))
        for i in range(len(times)):
            L = times[i]
            stop_time = start_time.add(L, cdtime.Years)
            modslopes = cmip5.get_linear_trends(P(time=(start_time,
                                                        stop_time)))

            noiseterm = np.std(bootstrap_slopes(noise, L))

            TOE[:, i] = modslopes / noiseterm
        TOE.setAxis(0, P.getAxis(0))
        return TOE
Пример #12
0
    def model_projections(self, depth):

        if depth in self.P.keys():
            pass

        else:
            to_proj = mask_data(self.soilmoisture[depth],
                                self.solvers[depth].eofs()[0].mask)
            P = MV.zeros(to_proj.shape[:2])
            for i in range(to_proj.shape[0]):

                tp = to_proj[i]
                mma_mask = mask_data(self.mma[depth], tp[0].mask)
                solver = Eof(mma_mask, weights='area')
                tp = mask_data(tp, solver.eofs()[0].mask)
                fac = da.get_orientation(solver)

                P[i] = solver.projectField(tp)[:, 0] * fac
            P.setAxisList(to_proj.getAxisList()[:2])
            self.P[depth] = P
            self.P[depth].getTime().id = "time"
Пример #13
0
class DroughtAtlas():
    def __init__(self, name, cutoff='0001-1-1'):
        if name.find("2.5") >= 0:
            self.name = name.split("2.5")[0]
        else:
            self.name = name
        #if name.find("+")<0:
        f = cdms.open("../DROUGHT_ATLAS/PROCESSED/" + name + ".nc")
        obs = f("pdsi")
        self.obs = MV.masked_where(np.isnan(obs), obs)
        self.obs = MV.masked_where(np.abs(self.obs) > 90, self.obs)
        self.obs = self.obs(time=(cutoff, '2020-12-31'))

        self.obs = mask_data(
            self.obs, self.obs.mask[0]
        )  #Make all the obs have the same mask as the first datapoint
        f.close()
        fm = cdms.open("../DROUGHT_ATLAS/CMIP5/pdsi." + name +
                       ".hist.rcp85.nc")
        self.model = get_rid_of_bad(fm("pdsi"))
        self.model = MV.masked_where(np.isnan(self.model), self.model)
        fm.close()

        # else:
        #DEPRECATED: MERGE observations onto common grid using old code
        #     name1,name2=name.split("+")
        #     f1 = cdms.open("../DROUGHT_ATLAS/PROCESSED/"+name1+".nc")
        #     obs1 = f1("pdsi")
        #     obs1 = MV.masked_where(np.isnan(obs1),obs1)
        #     obs1 = MV.masked_where(np.abs(obs1)>90,obs1)
        #     obs1 = obs1(time=(cutoff,'2017-12-31'))

        #     obs1=mask_data(obs1,obs1.mask[0])
        #     f1.close()
        #     fm1 = cdms.open("../DROUGHT_ATLAS/CMIP5/pdsi."+name1+".hist.rcp85.nc")
        #     model1=get_rid_of_bad(fm1("pdsi"))
        #     model1=MV.masked_where(np.isnan(model1),model1)
        #     fm1.close()

        #     f2 = cdms.open("../DROUGHT_ATLAS/PROCESSED/"+name2+".nc")
        #     obs2 = f2("pdsi")
        #     obs2 = MV.masked_where(np.isnan(obs2),obs2)
        #     obs2 = MV.masked_where(np.abs(obs2)>90,obs2)
        #     obs2 = obs2(time=(cutoff,'2017-12-12'))

        #     obs2=mask_data(obs2,obs2.mask[0])
        #     f2.close()
        #     fm2 = cdms.open("../DROUGHT_ATLAS/CMIP5/pdsi."+name2+".hist.rcp85.nc")
        #     model2=get_rid_of_bad(fm2("pdsi"))
        #     model2=MV.masked_where(np.isnan(model2),model2)
        #     fm2.close()

        #     self.obs=merge.merge(obs1,obs2)
        #     self.model=merge.merge(model1,model2)

        mma = MV.average(self.model, axis=0)
        self.mma = mask_data(
            mma, self.obs[0].mask)  #make all the models have the same mask
        self.solver = Eof(self.mma, weights='area')
        self.eofmask = self.solver.eofs()[0].mask

        self.fac = da.get_orientation(self.solver)
        self.projection = self.solver.projectField(
            mask_data(self.obs, self.eofmask))[:, 0] * self.fac
        self.noise = self.projection(time=('1-1-1', '1850-1-1'))
        self.P = self.model_projections()

    def get_noise(self, solver=None):
        if solver is None:
            return self.noise
        else:
            proj = solver.projectField(mask_data(
                self.obs, self.eofmask))[:, 0] * da.get_orientation(solver)
            noise = proj(time=('1-1-1', '1850-1-1'))
            return noise

    def get_forced(self, solver=None):
        if solver is None:
            return self.P
        else:
            return self.model_projections(solver=solver)

    def get_tree_ring_projection(self, solver=None):
        if solver is None:
            return self.projection
        else:
            fac = da.get_orientation(solver)
            projection = solver.projectField(mask_data(
                self.obs, self.eofmask))[:, 0] * fac
            return projection

    def plot_fingerprint(self, ax1=None, ax2=None):
        eof1 = self.solver.eofs()[0] * self.fac
        #v=max([np.abs(np.ma.min(eof1)),np.abs(np.ma.max(eof1))])
        pc1 = self.solver.pcs()[:, 0] * self.fac
        if ax1 is None:
            ax1 = plt.subplot(121)
        if self.name not in ["OWDA", "MXDA", "NADA", "MADA", "ANZDA"]:
            #m=bmap(eof1,cmap=cm.BrBG,vmin=-v,vmax=v)
            m = landplot(eof1)
            m.drawcoastlines()
            plt.colorbar(orientation="horizontal", label="EOF loading")
        else:
            m = plot_regional(self.solver.eofs()[0], self.name, cmap=cm.BrBG)
            m.drawcoastlines()
        plt.subplot(122)
        time_plot(pc1)

    def model_projections(self, solver=None):
        if solver is None:
            make_own_solver = True
        else:
            make_own_solver = False
        if solver is None:
            to_proj = mask_data(self.model, self.solver.eofs()[0].mask)
        else:
            to_proj = cmip5.cdms_clone(MV.filled(self.model, fill_value=0),
                                       self.model)
            to_proj = mask_data(to_proj, solver.eofs()[0].mask)
        P = MV.zeros(to_proj.shape[:2])
        for i in range(to_proj.shape[0]):
            tp = to_proj[i]
            if make_own_solver:
                mma_mask = mask_data(self.mma, tp[0].mask)

                solver = Eof(mma_mask, weights='area')
            fac = da.get_orientation(solver)

            P[i] = solver.projectField(tp)[:, 0] * fac
        P.setAxisList(to_proj.getAxisList()[:2])
        return P
        #self.P=P
    def sn_at_time(self,
                   start_time,
                   L,
                   overlapping=True,
                   noisestart=None,
                   solver=None):
        if noisestart is None:
            noisestart = cmip5.start_time(self.obs)
        noisestop = cmip5.stop_time(self.get_noise(solver=solver))

        stop_time = start_time.add(L, cdtime.Years)
        modslopes = cmip5.get_linear_trends(
            self.get_forced(solver=solver)(time=(start_time, stop_time)))
        if overlapping:
            noiseterm = bootstrap_slopes(
                self.get_noise(solver=solver)(time=(noisestart, noisestop)), L)
        else:
            noiseterm = da.get_slopes(
                self.get_noise(solver=solver)(time=(noisestart, noisestop)),
                L) / 365.
        return modslopes, noiseterm

    def obs_SN(self,
               start_time,
               stop_time=None,
               overlapping=True,
               include_trees=True,
               include_dai=False,
               include_cru=False,
               include_piControl=False,
               noisestart=None,
               solver=None,
               plot=True):
        to_return = {}
        if stop_time is None:
            stop_time = cmip5.stop_time(self.get_tree_ring_projection())
        target_obs = self.get_tree_ring_projection(solver=solver)(
            time=(start_time, stop_time))
        L = len(target_obs)
        modslopes, noiseterm = self.sn_at_time(start_time,
                                               L,
                                               overlapping=True,
                                               noisestart=noisestart,
                                               solver=solver)
        ns = np.std(noiseterm)
        signal = float(cmip5.get_linear_trends(target_obs))
        if plot:
            plt.hist(modslopes / ns,
                     20,
                     normed=True,
                     color=get_dataset_color("h85"),
                     alpha=.5)
            lab = str(start_time.year) + "-" + str(stop_time.year)
            da.fit_normals_to_data(modslopes / ns,
                                   color=get_dataset_color("h85"),
                                   lw=1,
                                   label="H85")

            plt.hist(noiseterm / ns,
                     20,
                     normed=True,
                     color=get_dataset_color("tree_noise"),
                     alpha=.5)
            da.fit_normals_to_data(noiseterm / ns,
                                   color=get_dataset_color("tree_noise"),
                                   lw=1,
                                   label="Pre-1850 tree rings")

        if include_trees:
            percentiles = []
            if plot:
                plt.axvline(signal / ns,
                            color=get_dataset_color("tree"),
                            lw=1,
                            label=lab + " GDA trend")
            print signal / ns
            noise_percentile = stats.percentileofscore(noiseterm.tolist(),
                                                       signal)
            h85_percentile = stats.percentileofscore(modslopes.tolist(),
                                                     signal)
            percentiles += [noise_percentile, h85_percentile]
            to_return["trees"] = [signal / ns] + percentiles
        if include_dai:
            daipercentiles = []
            dai_proj = self.project_dai_on_solver(start=start_time,
                                                  solver=solver)
            daitrend = float(
                cmip5.get_linear_trends(dai_proj(time=(start_time,
                                                       stop_time))))
            daisignal = daitrend / ns
            noise_percentile = stats.percentileofscore(noiseterm.tolist(),
                                                       daitrend)
            h85_percentile = stats.percentileofscore(modslopes.tolist(),
                                                     daitrend)
            daipercentiles += [noise_percentile, h85_percentile]
            if plot:
                plt.axvline(daisignal,
                            color=get_dataset_color("dai"),
                            lw=1,
                            label="Dai")
            print "DAI signal/noise is " + str(daisignal)
            to_return["dai"] = [daitrend / ns] + daipercentiles

        if include_cru:
            crupercentiles = []
            cru_proj = self.project_cru_on_solver(start=start_time,
                                                  solver=solver)
            crutrend = float(
                cmip5.get_linear_trends(cru_proj(time=(start_time,
                                                       stop_time))))
            noise_percentile = stats.percentileofscore(noiseterm.tolist(),
                                                       crutrend)
            h85_percentile = stats.percentileofscore(modslopes.tolist(),
                                                     crutrend)
            crupercentiles += [noise_percentile, h85_percentile]
            crusignal = crutrend / ns
            if plot:
                plt.axvline(crusignal,
                            color=get_dataset_color("cru"),
                            lw=1,
                            label="CRU")
            print "CRU signal/noise is " + str(crusignal)
            to_return["cru"] = [crutrend / ns] + crupercentiles
        if include_piControl:
            p = self.project_piControl_on_solver(solver=solver)
            noiseterm_mod = bootstrap_slopes(p, L)
            if plot:
                plt.hist(noiseterm_mod / ns,
                         20,
                         normed=True,
                         color=get_dataset_color("picontrol"),
                         alpha=.5)
                da.fit_normals_to_data(noiseterm_mod / ns,
                                       color=get_dataset_color("picontrol"),
                                       lw=1,
                                       label="PiControl")
            print "relative to model noise:"
            print float(signal) / np.std(noiseterm_mod)
        # percentiles+=[stats.percentileofscore(noiseterm_mod.tolist(),signal)]

        if plot:
            plt.legend(loc=0)
            plt.xlabel("S/N")
            plt.ylabel("Normalized Frequency")
        return to_return

    def for_figure_4(self,
                     start_time,
                     stop_time=None,
                     overlapping=True,
                     include_trees=True,
                     include_dai=False,
                     include_cru=False,
                     include_piControl=False,
                     noisestart=None,
                     solver=None):
        data = {}
        if stop_time is None:
            stop_time = cmip5.stop_time(self.get_tree_ring_projection())
        target_obs = self.get_tree_ring_projection()(time=(start_time,
                                                           stop_time))
        L = len(target_obs)
        modslopes, noiseterm = self.sn_at_time(start_time,
                                               L,
                                               overlapping=True,
                                               noisestart=noisestart,
                                               solver=solver)
        ns = np.std(noiseterm)
        signal = float(cmip5.get_linear_trends(target_obs))
        data["noise"] = noiseterm
        data["modslopes"] = modslopes
        data["tree_rings"] = signal

        if include_dai:
            dai_proj = self.project_dai_on_solver(start=start_time,
                                                  solver=solver)
            daitrend = cmip5.get_linear_trends(
                dai_proj(time=(start_time, stop_time)))
            data["dai"] = daitrend

        if include_cru:
            cru_proj = self.project_cru_on_solver(start=start_time,
                                                  solver=solver)
            crutrend = cmip5.get_linear_trends(
                cru_proj(time=(start_time, stop_time)))
            data["cru"] = crutrend

        if include_piControl:
            p = self.project_piControl_on_solver(solver=solver)
            noiseterm_mod = bootstrap_slopes(p, L)
            data["picontrol"] = noiseterm_mod

        return data

    def time_of_emergence(self,
                          start_time,
                          times=np.arange(10, 76),
                          noisestart=None,
                          plot=True,
                          solver=None,
                          uncertainty="lines",
                          **kwargs):
        if noisestart is None:
            noisestart = cmip5.start_time(self.obs)
        if not hasattr(self, "P"):
            self.model_projections()
        nmod, nyears = self.get_forced(solver=solver).shape
        self.TOE = MV.zeros((nmod, len(times)))
        for i in range(len(times)):
            L = times[i]
            modslopes, noiseterm = self.sn_at_time(start_time,
                                                   L,
                                                   noisestart=noisestart)
            sns = modslopes / np.std(noiseterm)
            self.TOE[:, i] = sns
        self.TOE.setAxis(0, self.get_forced(solver=solver).getAxis(0))
        if plot:
            endyears = start_time.year + times
            if uncertainty == "lines":
                for ind_model in self.TOE.asma():
                    plt.plot(endyears,
                             ind_model,
                             alpha=.3,
                             color=cm.Greys(.5),
                             lw=1)
            elif uncertainty == "bounds":
                plt.plot(endyears,
                         np.ma.min(self.TOE.asma(), axis=0),
                         linestyle="--",
                         **kwargs)
                plt.plot(endyears,
                         np.ma.max(self.TOE.asma(), axis=0),
                         linestyle="--",
                         **kwargs)

            else:
                plt.fill_between(endyears,
                                 np.ma.min(self.TOE.asma(), axis=0),
                                 np.ma.max(self.TOE.asma(), axis=0),
                                 alpha=.2,
                                 **kwargs)
            plt.plot(endyears,
                     np.ma.average(self.TOE.asma(), axis=0),
                     label=self.name + " model mean signal",
                     **kwargs)
            #plt.fill_between(endyears,np.ma.min(self.TOE.asma(),axis=0),np.ma.max(self.TOE.asma(),axis=0),alpha=.3,**kwargs)

            #plt.axhline(stats.norm.interval(.9)[-1],c="r",lw=3)
            plt.xlabel("Trend end year")
            plt.ylabel("Signal-to-noise ratio")

    def project_dai_on_solver(self, start='1970-1-1', solver=None):

        f = cdms.open("../DROUGHT_ATLAS/OBSERVATIONS/DAI_selfcalibrated.nc")
        dai_jja = f("pdsi")
        f.close()
        dai_jja_mask = mask_data(dai_jja,
                                 self.obs[0].mask)(time=(start, '2018-12-31'))
        newmask = np.prod(~dai_jja_mask.mask, axis=0)
        dai_jja_mask = mask_data(dai_jja_mask, newmask == 0)
        if solver is None:
            solver = Eof(mask_data(self.mma, newmask == 0), weights='area')
        dai_jja_mask = mask_data(dai_jja_mask, solver.eofs()[0].mask)
        fac = da.get_orientation(solver)
        return solver.projectField(dai_jja_mask)[:, 0] * fac

    def project_cru_on_solver(self, start='1970-1-1', solver=None):

        f = cdms.open("../DROUGHT_ATLAS/OBSERVATIONS/CRU_selfcalibrated.nc")
        cru_jja = f("pdsi")
        f.close()
        cru_jja_mask = mask_data(cru_jja,
                                 self.obs[0].mask)(time=(start, '2018-12-31'))
        newmask = np.prod(~cru_jja_mask.mask, axis=0)
        cru_jja_mask = mask_data(cru_jja_mask, newmask == 0)
        if solver is None:
            solver = Eof(mask_data(self.mma, newmask == 0), weights='area')
        cru_jja_mask = mask_data(cru_jja_mask, solver.eofs()[0].mask)
        fac = da.get_orientation(solver)
        return solver.projectField(cru_jja_mask)[:, 0] * fac

    def project_piControl_on_solver(self, solver=None):
        direc = "/Volumes/Marvel/PICTRL/PDSI_REGRIDDED_SUMMER/"
        files = glob.glob(direc + "*")
        npiC = len(files)

        fname = files[0]

        f = cdms.open(fname)
        piC_pdsi_regrid = f("pdsi_summer")
        piC_pdsi_regrid = MV.masked_where(np.isnan(piC_pdsi_regrid),
                                          piC_pdsi_regrid)
        mask = self.solver.eofs()[0].mask
        # grid=self.model.getGrid()
        nyears = piC_pdsi_regrid.shape[0]
        # tax=cdms.createAxis(np.arange(piC_pdsi.shape[0]))
        # tax.designateTime()
        # tax.units = 'years since 0000-7-1'
        # tax.id="time"
        # piC_pdsi.setAxis(0,tax)

        # piC_pdsi_regrid = piC_pdsi.regrid(grid,regridTool='regrid2')

        piC_mask = mask_data(piC_pdsi_regrid, mask)
        newmask = np.prod(~piC_mask.mask, axis=0)
        if solver is None:
            solver = Eof(mask_data(self.mma, newmask == 0), weights='area')
        fac = da.get_orientation(solver)
        p = solver.projectField(piC_mask)[:, 0] * fac
        for i in range(npiC)[1:]:
            fname = files[i]
            f = cdms.open(fname)
            piC_pdsi_regrid = f("pdsi_summer")
            piC_pdsi_regrid = MV.masked_where(np.isnan(piC_pdsi_regrid),
                                              piC_pdsi_regrid)
            # piC_pdsi = MV.masked_where(np.isnan(piC_pdsi),piC_pdsi)
            nyears += piC_pdsi_regrid.shape[0]
            # tax=cdms.createAxis(np.arange(piC_pdsi.shape[0]))
            # tax.designateTime()
            # tax.units = 'years since 0000-7-1'
            # tax.id="time"
            # piC_pdsi.setAxis(0,tax)

            # piC_pdsi_regrid = piC_pdsi.regrid(grid,regridTool='regrid2')
            piC_mask = mask_data(piC_pdsi_regrid, mask)
            newmask = np.prod(~piC_mask.mask, axis=0)
            solver = Eof(mask_data(self.mma, newmask == 0), weights='area')
            fac = da.get_orientation(solver)
            f.close()
            p = MV.concatenate((p, fac * solver.projectField(piC_mask)[:, 0]))
        tax = cdms.createAxis(np.arange(nyears))
        tax.designateTime()
        tax.units = 'years since 0000-7-1'
        tax.id = "time"
        p.setAxis(0, tax)
        return p
Пример #14
0
def NatureRevisions_Figure5(D):
    aerosol_start = cdtime.comptime(1950,1,1)
    aerosol_stop = cdtime.comptime(1975,12,31)
    aerosolsolver=Eof(D.ALL.mma(time=(aerosol_start,aerosol_stop)),weights='area')
    fac=da.get_orientation(aerosolsolver)
    plt.subplot(221)
    m=b.landplot(fac*aerosolsolver.eofs()[0],vmin=-.1,vmax=.1)
    m.fillcontinents(color="gray",zorder=0)
    
    varex= str(int(100*np.round(aerosolsolver.varianceFraction()[0],2)))
    plt.title("(a)")#: 1950-1975 historical fingerprint ("+varex+"% of variance explained)",fontsize=8)
    m.drawcoastlines(color='gray')
    plt.ylim(-60,90)
    plt.colorbar(orientation='horizontal',label='EOF loading')
    plt.subplot(222)
    Plotting.time_plot(fac*aerosolsolver.pcs()[:,0],color=cm.Greys(.8),lw=1)
    plt.title("(b)")#: Associated PC",fontsize=8)
    plt.ylabel("Temporal amplitude")

    plt.subplot(223)

    target_obs,cru_proj,dai_proj=pdsi_time_series(D,aerosol_start,aerosol_stop,aerosols=True)
    plt.legend(fontsize=6)
    plt.title("(c)")#: Projections on fingerprint",fontsize=8)
    plt.subplot(224)

   # target_obs = D.ALL.get_tree_ring_projection(solver = aerosolsolver)(time=(aerosol_start,aerosol_stop))
    L=len(target_obs)
    modslopes,noiseterm = D.ALL.sn_at_time(aerosol_start,L,overlapping=True,solver=aerosolsolver)
    ns=np.std(noiseterm)
    signal = float(cmip5.get_linear_trends(target_obs))
    plt.hist(modslopes/ns,20,normed=True,color=get_dataset_color("h85"),alpha=.5)
    lab = str(aerosol_start.year)+"-"+str(aerosol_stop.year)
    da.fit_normals_to_data(modslopes/ns,color=get_dataset_color("h85"),lw=1,label="H85")

    plt.hist(noiseterm/ns,20,normed=True,color=get_dataset_color("tree_noise"),alpha=.5)
    da.fit_normals_to_data(noiseterm/ns,color=get_dataset_color("tree_noise"),lw=1,label="Pre-1850 tree rings")
    percentiles=[]
    plt.axvline(signal/ns,color=get_dataset_color("tree"),lw=1,label=lab+" GDA trend")
    
    noise_percentile=stats.percentileofscore(noiseterm.tolist(),signal)
    h85_percentile=stats.percentileofscore(modslopes.tolist(),signal)
    percentiles += [noise_percentile,h85_percentile]


    daitrend = cmip5.get_linear_trends(dai_proj)
    print "DAI slope is "+str(daitrend)
    daisignal = daitrend/ns
    
    plt.axvline(daisignal,color=get_dataset_color("dai"),lw=1,label="Dai")
    print "DAI signal/noise is "+str(daisignal)

    
    
    crutrend = cmip5.get_linear_trends(cru_proj)
    print "CRU slope is "+str(crutrend)
    crusignal = crutrend/ns
    
    plt.axvline(crusignal,color=get_dataset_color("cru"),lw=1,label="CRU")
    print "CRU signal/noise is "+str(crusignal)

   
            
       
    plt.legend(loc=0,fontsize=8)
    plt.xlabel("S/N")
    plt.ylabel("Normalized Frequency")
    plt.title("(d)")#: Detection and Attribution Results",fontsize=8)
    fig=plt.gcf()
    for ax in fig.axes:
        plt.setp(ax.xaxis.get_label(),fontsize=6)
        plt.setp(ax.yaxis.get_label(),fontsize=6)
        plt.setp(ax.get_xticklabels(),fontsize=6)
        plt.setp(ax.get_yticklabels(),fontsize=6)
    ax=fig.axes[0]
    ax.set_title("(a)",fontsize=6)
    ax=fig.axes[2]
    ax.set_title("(b)",fontsize=6)
    ax=fig.axes[3]
    ax.set_title("(c)",fontsize=6)
    ax=fig.axes[4]
    ax.set_title("(d)",fontsize=6)
    leg=ax.legend(fontsize=6,ncol=1,loc=2)
    leg.set_frame_on(False)
    cax=fig.axes[1]
    ticklabels=["-0.1","","-0.05","","0","","0.05","","0.1"]
    cax.set_xticklabels(ticklabels)
    plt.setp(cax.xaxis.get_ticklabels(),fontsize=6)
    plt.setp(cax.xaxis.get_label(),fontsize=6)
Пример #15
0
class DroughtAtlas():
    def __init__(self,name,cutoff='0001-1-1'):
        self.name=name
        #if name.find("+")<0:
        f = cdms.open("../DROUGHT_ATLAS/PROCESSED/"+name+".nc")
        obs = f("pdsi")
        self.obs = MV.masked_where(np.isnan(obs),obs)
        self.obs = MV.masked_where(np.abs(self.obs)>90,self.obs)
        self.obs = self.obs(time=(cutoff,'2020-12-31'))

        self.obs=mask_data(self.obs,self.obs.mask[0]) #Make all the obs have the same mask as the first datapoint
        f.close()
        fm = cdms.open("../DROUGHT_ATLAS/CMIP5/pdsi."+name+".hist.rcp85.nc")
        self.model=get_rid_of_bad(fm("pdsi"))
        self.model=MV.masked_where(np.isnan(self.model),self.model)
        fm.close()

        
        
        
        # else:
        #DEPRECATED: MERGE observations onto common grid using old code
        #     name1,name2=name.split("+")
        #     f1 = cdms.open("../DROUGHT_ATLAS/PROCESSED/"+name1+".nc")
        #     obs1 = f1("pdsi")
        #     obs1 = MV.masked_where(np.isnan(obs1),obs1)
        #     obs1 = MV.masked_where(np.abs(obs1)>90,obs1)
        #     obs1 = obs1(time=(cutoff,'2017-12-31'))
       
        #     obs1=mask_data(obs1,obs1.mask[0])
        #     f1.close()
        #     fm1 = cdms.open("../DROUGHT_ATLAS/CMIP5/pdsi."+name1+".hist.rcp85.nc")
        #     model1=get_rid_of_bad(fm1("pdsi"))
        #     model1=MV.masked_where(np.isnan(model1),model1)
        #     fm1.close()

            
        #     f2 = cdms.open("../DROUGHT_ATLAS/PROCESSED/"+name2+".nc")
        #     obs2 = f2("pdsi")
        #     obs2 = MV.masked_where(np.isnan(obs2),obs2)
        #     obs2 = MV.masked_where(np.abs(obs2)>90,obs2)
        #     obs2 = obs2(time=(cutoff,'2017-12-12'))
       
        #     obs2=mask_data(obs2,obs2.mask[0])
        #     f2.close()
        #     fm2 = cdms.open("../DROUGHT_ATLAS/CMIP5/pdsi."+name2+".hist.rcp85.nc")
        #     model2=get_rid_of_bad(fm2("pdsi"))
        #     model2=MV.masked_where(np.isnan(model2),model2)
        #     fm2.close()


        #     self.obs=merge.merge(obs1,obs2)
        #     self.model=merge.merge(model1,model2)
            

            
       
        
    
        mma = MV.average(self.model,axis=0)
        self.mma = mask_data(mma,self.obs[0].mask) #make all the models have the same mask
        self.solver = Eof(self.mma)
        eofmask=self.solver.eofs()[0].mask
        self.fac=da.get_orientation(self.solver)
        self.projection = self.solver.projectField(mask_data(self.obs,eofmask))[:,0]*self.fac
        self.noise = self.projection(time=('1-1-1','1850-1-1'))

            
    def plot_fingerprint(self,ax1=None,ax2=None):
        eof1=self.solver.eofs()[0]*self.fac
        #v=max([np.abs(np.ma.min(eof1)),np.abs(np.ma.max(eof1))])
        pc1 = self.solver.pcs()[:,0]*self.fac
        if ax1 is None:
            ax1=plt.subplot(211)
        if self.name not in ["OWDA","MXDA","NADA","MADA"]:
            #m=bmap(eof1,cmap=cm.BrBG,vmin=-v,vmax=v)
            m=landplot(eof1)
            m.drawcoastlines()
            #plt.colorbar(orientation="horizontal",)
        else:
            m=plot_regional(self.solver.eofs()[0],self.name,cmap=cm.BrBG)
        plt.subplot(212)
        time_plot(pc1)
    def model_projections(self):
        to_proj = mask_data(self.model,self.solver.eofs()[0].mask)
        P=MV.zeros(to_proj.shape[:2])
        for i in range(to_proj.shape[0]):
            tp = to_proj[i]
            mma_mask = mask_data(self.mma,tp[0].mask)
            solver = Eof(mma_mask)
            fac=da.get_orientation(solver)
            
            P[i] = solver.projectField(tp)[:,0]*fac
        P.setAxisList(to_proj.getAxisList()[:2])
        self.P=P
    def sn_at_time(self,start_time,L,overlapping=True):
        if not hasattr(self,"P"):
            self.model_projections()
        stop_time=start_time.add(L,cdtime.Years)
        modslopes = cmip5.get_linear_trends(self.P(time=(start_time,stop_time)))
        if overlapping:
            noiseterm = bootstrap_slopes(self.noise,L)
        else:
            noiseterm = da.get_slopes(self.noise,L)/365.
        return modslopes,noiseterm
    def obs_SN(self,start_time,stop_time=None,overlapping=True,include_dai=False):
        if stop_time is None:
            stop_time=cmip5.stop_time(self.projection)
        target_obs = self.projection(time=(start_time,stop_time))
        L=len(target_obs)
        modslopes,noiseterm = self.sn_at_time(start_time,L,overlapping=True)
        ns=np.std(noiseterm)
        signal = float(cmip5.get_linear_trends(target_obs))/ns
        plt.hist(modslopes/ns,20,normed=True,color=cm.Oranges(.8),alpha=.5)
        lab = str(start_time.year)+"-"+str(stop_time.year)
        da.fit_normals_to_data(modslopes/ns,color=cm.Oranges(.9),label=lab+" Model projections")

        plt.hist(noiseterm/ns,20,normed=True,color=cm.Greens(.8),alpha=.5)
        da.fit_normals_to_data(noiseterm/ns,color=cm.Greens(.9),label="Pre-1850 tree-ring reconstructions")
        plt.axvline(signal,color=cm.Blues(.8),lw=3,label=lab+" Tree-ring reconstructions")
        print signal
        if include_dai:
            dai_proj = self.project_dai_on_solver(start=start_time)
            daitrend = cmip5.get_linear_trends(dai_proj(time=(start_time,stop_time)))
            
            
            
        plt.legend(loc=0)
        
        
        
    def time_of_emergence(self,start_time,times = np.arange(10,76),plot=True,**kwargs):
        if not hasattr(self,"P"):
            self.model_projections()
        nmod,nyears = self.P.shape
        self.TOE=MV.zeros((nmod,len(times)))
        for i in range(len(times)):
            L=times[i]
            modslopes,noiseterm = self.sn_at_time(start_time,L)
            sns=modslopes/np.std(noiseterm)
            self.TOE[:,i]=sns
        self.TOE.setAxis(0,self.P.getAxis(0))
        if plot:
            endyears = start_time.year+times
            plt.plot(endyears,np.ma.average(self.TOE.asma(),axis=0),lw=4,label=self.name+" model mean signal",**kwargs)
            plt.fill_between(endyears,np.ma.min(self.TOE.asma(),axis=0),np.ma.max(self.TOE.asma(),axis=0),alpha=.4,**kwargs)
            plt.axhline(stats.norm.interval(.9)[-1],c="r",lw=3)
            plt.xlabel("Trend end year")
            plt.ylabel("Signal-to-noise ratio")

    def project_dai_on_solver(self,start='1970-1-1'):

        f = cdms.open("../DROUGHT_ATLAS/OBSERVATIONS/DAI_selfcalibrated.nc")
        dai_jja=f("pdsi")
        f.close()
        dai_jja_mask = mask_data(dai_jja,self.obs[0].mask)(time=(start,'2018-12-31'))
        newmask = np.prod(~dai_jja_mask.mask,axis=0)
        dai_jja_mask = mask_data(dai_jja_mask,newmask==0)
        solver = Eof(mask_data(self.mma,newmask==0))
        dai_jja_mask = mask_data(dai_jja_mask,solver.eofs()[0].mask)
        fac = da.get_orientation(solver)
        return solver.projectField(dai_jja_mask)[:,0]*fac