Пример #1
0
    def test_discrete_mean(self):
        xpos, ephcoup = discrete_mean(spectral_density_Lorentzian, \
                (eta, gamma, omega_v), 0.0, omega_c, 10)
        print "discrete", xpos, ephcoup

        dipole_abs = 1.0
        nmols = 1
        elocalex = 100000. * constant.cm2au
        J = np.array([[0.]]) * constant.cm2au
        omega_value = xpos * constant.cm2au
        omega = [{0: x, 1: x} for x in omega_value]
        D = [{
            0: 0.0,
            1: ephcoup[i] * np.sqrt(2. / omega_value[i])
        } for i in range(len(ephcoup))]

        nphs = len(xpos)
        nlevels = [10] * nphs

        phinfo = [list(a) for a in zip(omega, D, nlevels)]

        mol = []
        for imol in xrange(nmols):
            mol_local = obj.Mol(elocalex, nphs, dipole_abs)
            mol_local.create_ph(phinfo)
            mol.append(mol_local)

        nexciton = 0
        procedure = [[20, 0.1], [10, 0], [1, 0]]

        iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, HMPOQN, HMPOQNidx, HMPOQNtot, ephtable, pbond = \
        MPSsolver.construct_MPS_MPO_2(mol, J, procedure[0][0], nexciton)

        MPSsolver.optimization(iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, ephtable, pbond,\
                        nexciton, procedure, method="2site")

        # if in the EX space, MPO minus E_e to reduce osillation
        for ibra in xrange(pbond[0]):
            HMPO[0][0, ibra, ibra, 0] -= elocalex

        iMPS = [iMPS, iMPSQN, len(iMPS) - 1, 0]
        QNargs = [ephtable, False]
        HMPO = [HMPO, HMPOQN, HMPOQNidx, HMPOQNtot]

        dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol, pbond, \
                "a^\dagger", dipole=True, QNargs=QNargs)
        iMPS = mpslib.MPSdtype_convert(iMPS, QNargs=QNargs)

        nsteps = 1000
        dt = 30.

        autocorr = tMPS.ZeroTCorr(iMPS, HMPO, dipoleMPO, nsteps, dt, ephtable, \
                thresh=1.0e-4, cleanexciton=1-nexciton, algorithm=2, compress_method="svd", QNargs=QNargs)

        with open("std_data/discretization/mean.npy", 'rb') as f:
            mean_std = np.load(f)

        self.assertTrue(np.allclose(autocorr, mean_std, rtol=1.e-3))
Пример #2
0
    def test_ZeroTcorr(self, value):

        print "data", value
        nexciton = 0
        procedure = [[1, 0], [1, 0], [1, 0]]

        mol = construct_mol(*value[3])

        iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, HMPOQN, HMPOQNidx, HMPOQNtot, ephtable, pbond = \
        MPSsolver.construct_MPS_MPO_2(mol, J, procedure[0][0], nexciton)

        MPSsolver.optimization(iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, ephtable, pbond,\
                        nexciton, procedure, method="2site")
        # if in the EX space, MPO minus E_e to reduce osillation
        for ibra in xrange(pbond[0]):
            HMPO[0][0, ibra, ibra, 0] -= 2.28614053 / constant.au2ev

        if value[2] != None:
            iMPS = [iMPS, iMPSQN, len(iMPS) - 1, 0]
            QNargs = [ephtable, False]
            HMPO = [HMPO, HMPOQN, HMPOQNidx, HMPOQNtot]
        else:
            QNargs = None

        dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol,
                                                                pbond,
                                                                "a^\dagger",
                                                                dipole=True,
                                                                QNargs=QNargs)
        iMPS = mpslib.MPSdtype_convert(iMPS, QNargs=QNargs)

        nsteps = 100
        dt = 30.0

        autocorr = tMPS.ZeroTCorr(iMPS,
                                  HMPO,
                                  dipoleMPO,
                                  nsteps,
                                  dt,
                                  ephtable,
                                  thresh=1.0e-3,
                                  cleanexciton=1 - nexciton,
                                  algorithm=value[0],
                                  compress_method=value[1],
                                  QNargs=QNargs)
        autocorr = np.array(autocorr)
        with open(
                "std_data/tMPS/ZeroTabs_" + str(value[0]) + str(value[1]) +
                ".npy", 'rb') as f:
            ZeroTabs_std = np.load(f)
        self.assertTrue(np.allclose(autocorr, ZeroTabs_std, rtol=value[4]))
Пример #3
0
    def test_ZeroTcorr(self, value):

        nexciton = 0
        procedure = [[20, 0.5], [10, 0.1], [5, 0], [1, 0]]

        mol = construct_mol(*value[0])

        Chain = chainmap.Chain_Map_discrete(mol)
        mol = chainmap.Chain_Mol(Chain, mol)

        iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, HMPOQN, HMPOQNidx, HMPOQNtot, ephtable, pbond = \
        MPSsolver.construct_MPS_MPO_2(mol, J, procedure[0][0], nexciton,\
                rep="chain")

        MPSsolver.optimization(iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, ephtable, pbond,\
                        nexciton, procedure, method="2site")

        # if in the EX space, MPO minus E_e to reduce osillation
        for ibra in xrange(pbond[0]):
            HMPO[0][0, ibra, ibra, 0] -= 2.28614053 / constant.au2ev

        iMPS = [iMPS, iMPSQN, len(iMPS) - 1, 0]
        QNargs = [ephtable, False]
        HMPO = [HMPO, HMPOQN, HMPOQNidx, HMPOQNtot]

        dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol,
                                                                pbond,
                                                                "a^\dagger",
                                                                dipole=True,
                                                                QNargs=QNargs)
        iMPS = mpslib.MPSdtype_convert(iMPS, QNargs=QNargs)

        nsteps = 100
        dt = 10.0

        autocorr = tMPS.ZeroTCorr(iMPS,
                                  HMPO,
                                  dipoleMPO,
                                  nsteps,
                                  dt,
                                  ephtable,
                                  thresh=1.0e-3,
                                  cleanexciton=1 - nexciton,
                                  algorithm=2,
                                  compress_method="svd",
                                  QNargs=QNargs)
        autocorr = np.array(autocorr)

        with open("std_data/quasiboson/0Tabs_std.npy", 'rb') as f:
            ZeroTabs_std = np.load(f)
        self.assertTrue(np.allclose(autocorr, ZeroTabs_std, rtol=value[1]))
Пример #4
0
    def test_ZeroTcorr_TDVP(self, value):

        nexciton = 0
        procedure = [[50, 0], [50, 0], [50, 0]]

        iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, HMPOQN, HMPOQNidx, HMPOQNtot, ephtable, pbond = \
        MPSsolver.construct_MPS_MPO_2(mol, J, procedure[0][0], nexciton)

        MPSsolver.optimization(iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, ephtable, pbond,\
                        nexciton, procedure, method="2site")
        # if in the EX space, MPO minus E_e to reduce osillation
        for ibra in xrange(pbond[0]):
            HMPO[0][0, ibra, ibra, 0] -= 2.28614053 / constant.au2ev

        dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol,
                                                                pbond,
                                                                "a^\dagger",
                                                                dipole=True)
        iMPS = mpslib.MPSdtype_convert(iMPS)

        nsteps = 200
        dt = value[2]

        for f in glob.glob("TDVP_PS*.npy"):
            os.remove(f)

        autocorr = tMPS.ZeroTCorr(iMPS,
                                  HMPO,
                                  dipoleMPO,
                                  nsteps,
                                  dt,
                                  ephtable,
                                  thresh=1.0e-7,
                                  cleanexciton=1 - nexciton,
                                  algorithm=value[1],
                                  compress_method="variational",
                                  scheme=value[0])

        with open("std_data/tMPS/ZeroTabs_" + value[0] + ".npy", 'rb') as f:
            ZeroTabs_std = np.load(f)
        self.assertTrue(
            np.allclose(autocorr, ZeroTabs_std[:len(autocorr)], rtol=value[3]))
Пример #5
0
    def test_ZeroTcorr_MPOscheme3(self, value):
        print "data", value
        J = np.array([[0.0, -0.1, 0.0], [-0.1, 0.0, -0.3], [0.0, -0.3, 0.0]
                      ]) / constant.au2ev
        nexciton = 0
        procedure = [[1, 0], [1, 0], [1, 0]]
        mol = construct_mol(*value[3])

        iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, HMPOQN, HMPOQNidx, HMPOQNtot, ephtable, pbond = \
        MPSsolver.construct_MPS_MPO_2(mol, J, procedure[0][0], nexciton, MPOscheme=2)

        MPSsolver.optimization(iMPS, iMPSdim, iMPSQN, HMPO, HMPOdim, ephtable, pbond,\
                        nexciton, procedure, method="2site")
        # if in the EX space, MPO minus E_e to reduce osillation
        for ibra in xrange(pbond[0]):
            HMPO[0][0, ibra, ibra, 0] -= 2.28614053 / constant.au2ev

        if value[2] != None:
            iMPS = [iMPS, iMPSQN, len(iMPS) - 1, 0]
            QNargs = [ephtable, False]
            HMPO = [HMPO, HMPOQN, HMPOQNidx, HMPOQNtot]
        else:
            QNargs = None

        dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol,
                                                                pbond,
                                                                "a^\dagger",
                                                                dipole=True,
                                                                QNargs=QNargs)
        iMPS = mpslib.MPSdtype_convert(iMPS, QNargs=QNargs)

        nsteps = 50
        dt = 30.0

        autocorr = tMPS.ZeroTCorr(iMPS,
                                  HMPO,
                                  dipoleMPO,
                                  nsteps,
                                  dt,
                                  ephtable,
                                  thresh=1.0e-4,
                                  cleanexciton=1 - nexciton,
                                  algorithm=value[0],
                                  compress_method=value[1],
                                  QNargs=QNargs)
        autocorr = np.array(autocorr)

        # scheme3
        iMPS3, iMPSdim3, iMPSQN3, HMPO3, HMPOdim3, HMPOQN3, HMPOQNidx3, HMPOQNtot3, ephtable3, pbond3 = \
        MPSsolver.construct_MPS_MPO_2(mol, J, procedure[0][0], nexciton, MPOscheme=3)
        MPSsolver.optimization(iMPS3, iMPSdim3, iMPSQN3, HMPO3, HMPOdim3, ephtable3, pbond3,\
                        nexciton, procedure, method="2site")
        # if in the EX space, MPO minus E_e to reduce osillation
        for ibra in xrange(pbond3[0]):
            HMPO3[0][0, ibra, ibra, 0] -= 2.28614053 / constant.au2ev

        if value[2] != None:
            iMPS3 = [iMPS3, iMPSQN3, len(iMPS3) - 1, 0]
            QNargs3 = [ephtable3, False]
            HMPO3 = [HMPO3, HMPOQN3, HMPOQNidx3, HMPOQNtot3]
        else:
            QNargs3 = None

        dipoleMPO, dipoleMPOdim = MPSsolver.construct_onsiteMPO(mol,
                                                                pbond,
                                                                "a^\dagger",
                                                                dipole=True,
                                                                QNargs=QNargs3)

        iMPS3 = mpslib.MPSdtype_convert(iMPS3, QNargs=QNargs)

        nsteps = 50
        dt = 30.0

        autocorr3 = tMPS.ZeroTCorr(iMPS3, HMPO3, dipoleMPO, nsteps, dt, ephtable3,\
                thresh=1.0e-4, cleanexciton=1-nexciton, algorithm=value[0],
                compress_method=value[1], QNargs=QNargs3)
        autocorr3 = np.array(autocorr3)

        self.assertTrue(np.allclose(autocorr, autocorr3, rtol=value[4]))