Пример #1
0
 def test_lag_calc_api(self):
     detections = [d for f in self.party for d in f]
     templates = [f.template.st for f in self.party]
     template_names = [f.template.name for f in self.party]
     output_cat = lag_calc(detections,
                           self.data,
                           template_names,
                           templates,
                           shift_len=0.2,
                           min_cc=0.4,
                           horizontal_chans=['E', 'N', '1', '2'],
                           vertical_chans=['Z'],
                           cores=1,
                           interpolate=False,
                           plot=False)
     self.assertEqual(len(output_cat), len(detections))
     for event in output_cat:
         self.assertEqual(len(event.picks), len(self.data))
Пример #2
0
# Process the data in the same way as the template
for tr in st:
    tr = pre_processing.dayproc(tr, 1.0, 20.0, 3, 100.0,
                                matchdef.debug, day)

#Set directory for match filter output plots
plot_dir = '/home/chet/data/plot'
# Compute detections
detections = match_filter.match_filter(template_names, templates, st,
                                       8.0, matchdef.threshtype,
                                       matchdef.trig_int, True, plot_dir,
                                       cores=5)

# Do the lag calculations
new_catalog = lag_calc.lag_calc(detections=detections, detect_data=st,
                                templates=temp_tup, min_cc=0.2)
# We now have a list of detections! We can output these to a file to check later
# f=open('/home/chet/data/test_detections.csv','w')
# for detection in detections:
#     f.write(detection.template_name+', '+str(detection.detect_time)+\
#             ', '+str(detection.detect_val)+', '+str(detection.threshold)+\
#             ', '+str(detection.no_chans)+'\n')
# f.close()

##Instead of saving all of these waveforms, just save the plots as pdf
# wav_dir = '/home/chet/data/detections/'
# det_wav = Stream()
# for detection in detections:
#     st.plot(starttime=detection.detect_time-2, endtime=detection.detect_time+8,
#             outfile=wav_dir+detection.template_name+' ' +
#             str(detection.detect_time)+'.pdf')
Пример #3
0
def run_tutorial(min_magnitude=2, shift_len=0.2, num_cores=4):
    import obspy
    if int(obspy.__version__.split('.')[0]) >= 1:
        from obspy.clients.fdsn import Client
    else:
        from obspy.fdsn import Client
    from obspy.core.event import Catalog
    from obspy import UTCDateTime
    from eqcorrscan.core import template_gen, match_filter, lag_calc
    from eqcorrscan.utils import pre_processing, catalog_utils

    client = Client('NCEDC')
    t1 = UTCDateTime(2004, 9, 28)
    t2 = t1 + 86400
    print('Downloading catalog')
    catalog = client.get_events(starttime=t1,
                                endtime=t2,
                                minmagnitude=min_magnitude,
                                minlatitude=35.7,
                                maxlatitude=36.1,
                                minlongitude=-120.6,
                                maxlongitude=-120.2,
                                includearrivals=True)
    # We don't need all the picks, lets take the information from the
    # five most used stations - note that this is done to reduce computational
    # costs.
    catalog = catalog_utils.filter_picks(catalog,
                                         channels=['EHZ'],
                                         top_n_picks=5)
    print('Generating templates')
    templates = template_gen.from_client(catalog=catalog,
                                         client_id='NCEDC',
                                         lowcut=2.0,
                                         highcut=9.0,
                                         samp_rate=50.0,
                                         filt_order=4,
                                         length=3.0,
                                         prepick=0.15,
                                         swin='all',
                                         process_len=3600)
    start_time = UTCDateTime(2004, 9, 28, 17)
    end_time = UTCDateTime(2004, 9, 28, 20)
    process_len = 1800
    chunks = []
    chunk_start = start_time
    while chunk_start < end_time:
        chunk_end = chunk_start + process_len
        if chunk_end > end_time:
            chunk_end = end_time
        chunks.append((chunk_start, chunk_end))
        chunk_start += process_len

    all_detections = []
    picked_catalog = Catalog()
    template_names = [
        str(template[0].stats.starttime) for template in templates
    ]
    for t1, t2 in chunks:
        print('Downloading and processing for start-time: %s' % t1)
        # Download and process the data
        bulk_info = [(tr.stats.network, tr.stats.station, '*',
                      tr.stats.channel[0] + 'H' + tr.stats.channel[1], t1, t2)
                     for tr in templates[0]]
        # Just downloading a chunk of data
        st = client.get_waveforms_bulk(bulk_info)
        st.merge(fill_value='interpolate')
        st = pre_processing.shortproc(st,
                                      lowcut=2.0,
                                      highcut=9.0,
                                      filt_order=4,
                                      samp_rate=50.0,
                                      debug=0,
                                      num_cores=num_cores)
        detections = match_filter.match_filter(template_names=template_names,
                                               template_list=templates,
                                               st=st,
                                               threshold=8.0,
                                               threshold_type='MAD',
                                               trig_int=6.0,
                                               plotvar=False,
                                               plotdir='.',
                                               cores=num_cores)
        # Extract unique detections from set.
        unique_detections = []
        for master in detections:
            keep = True
            for slave in detections:
                if not master == slave and\
                   abs(master.detect_time - slave.detect_time) <= 1.0:
                    # If the events are within 1s of each other then test which
                    # was the 'best' match, strongest detection
                    if not master.detect_val > slave.detect_val:
                        keep = False
                        break
            if keep:
                unique_detections.append(master)
        all_detections += unique_detections

        picked_catalog += lag_calc.lag_calc(detections=unique_detections,
                                            detect_data=st,
                                            template_names=template_names,
                                            templates=templates,
                                            shift_len=shift_len,
                                            min_cc=0.5,
                                            interpolate=True,
                                            plot=False)
    # Return all of this so that we can use this function for testing.
    return all_detections, picked_catalog, templates, template_names
Пример #4
0
def run_tutorial(min_magnitude=2, shift_len=0.2, num_cores=4, min_cc=0.5):
    """Functional, tested example script for running the lag-calc tutorial."""
    if num_cores > cpu_count():
        num_cores = cpu_count()
    client = Client('NCEDC')
    t1 = UTCDateTime(2004, 9, 28)
    t2 = t1 + 86400
    print('Downloading catalog')
    catalog = client.get_events(starttime=t1,
                                endtime=t2,
                                minmagnitude=min_magnitude,
                                minlatitude=35.7,
                                maxlatitude=36.1,
                                minlongitude=-120.6,
                                maxlongitude=-120.2,
                                includearrivals=True)
    # We don't need all the picks, lets take the information from the
    # five most used stations - note that this is done to reduce computational
    # costs.
    catalog = catalog_utils.filter_picks(catalog,
                                         channels=['EHZ'],
                                         top_n_picks=5)
    # There is a duplicate pick in event 3 in the catalog - this has the effect
    # of reducing our detections - check it yourself.
    for pick in catalog[3].picks:
        if pick.waveform_id.station_code == 'PHOB' and \
                        pick.onset == 'emergent':
            catalog[3].picks.remove(pick)
    print('Generating templates')
    templates = template_gen.template_gen(method="from_client",
                                          catalog=catalog,
                                          client_id='NCEDC',
                                          lowcut=2.0,
                                          highcut=9.0,
                                          samp_rate=50.0,
                                          filt_order=4,
                                          length=3.0,
                                          prepick=0.15,
                                          swin='all',
                                          process_len=3600)
    # In this section we generate a series of chunks of data.
    start_time = UTCDateTime(2004, 9, 28, 17)
    end_time = UTCDateTime(2004, 9, 28, 20)
    process_len = 3600
    chunks = []
    chunk_start = start_time
    while chunk_start < end_time:
        chunk_end = chunk_start + process_len
        if chunk_end > end_time:
            chunk_end = end_time
        chunks.append((chunk_start, chunk_end))
        chunk_start += process_len

    all_detections = []
    picked_catalog = Catalog()
    template_names = [
        template[0].stats.starttime.strftime("%Y%m%d_%H%M%S")
        for template in templates
    ]
    for t1, t2 in chunks:
        print('Downloading and processing for start-time: %s' % t1)
        # Download and process the data
        bulk_info = [(tr.stats.network, tr.stats.station, '*',
                      tr.stats.channel, t1, t2) for tr in templates[0]]
        # Just downloading a chunk of data
        try:
            st = client.get_waveforms_bulk(bulk_info)
        except FDSNException:
            st = Stream()
            for _bulk in bulk_info:
                st += client.get_waveforms(*_bulk)
        st.merge(fill_value='interpolate')
        st = pre_processing.shortproc(st,
                                      lowcut=2.0,
                                      highcut=9.0,
                                      filt_order=4,
                                      samp_rate=50.0,
                                      num_cores=num_cores)
        detections = match_filter.match_filter(template_names=template_names,
                                               template_list=templates,
                                               st=st,
                                               threshold=8.0,
                                               threshold_type='MAD',
                                               trig_int=6.0,
                                               plotvar=False,
                                               plotdir='.',
                                               cores=num_cores)
        # Extract unique detections from set.
        unique_detections = []
        for master in detections:
            keep = True
            for slave in detections:
                if not master == slave and\
                   abs(master.detect_time - slave.detect_time) <= 1.0:
                    # If the events are within 1s of each other then test which
                    # was the 'best' match, strongest detection
                    if not master.detect_val > slave.detect_val:
                        keep = False
                        break
            if keep:
                unique_detections.append(master)
        all_detections += unique_detections

        picked_catalog += lag_calc.lag_calc(detections=unique_detections,
                                            detect_data=st,
                                            template_names=template_names,
                                            templates=templates,
                                            shift_len=shift_len,
                                            min_cc=min_cc,
                                            interpolate=False,
                                            plot=False)
    # Return all of this so that we can use this function for testing.
    return all_detections, picked_catalog, templates, template_names