Пример #1
0
    def evaluate(A, C):
        # accelerator results 
        acc = A.predict(X)
        # classification by C and truly 
        cls_c = [1 if v[1] > v[0] else 0 for v in C.predict(X)]
        cls_t = [accept(Y[i], acc[i]) for i in range(N)] # to bool
        # relatvie error for all test data
        re = [error.relative_error(Y[i], acc[i]) for i in range(N)]
        re_c = [error.relative_error(Y[i], acc[i]) for i in range(N) if cls_c[i]]

        # accuracy of C, recall of C
        accuracy_of_C = sum([1.0 if cls_t[i] == cls_c[i] else 0 for i in range(N)]) / float(1e-10 + N)
        recall_of_C = sum([1.0 if cls_t[i] and cls_c[i] else 0 for i in range(N)]) / float(1e-10 + sum([1 if v else 0 for v in cls_t]))

        # invocation of C, invocation truly
        invocation_of_C = float(sum([1 if v else 0 for v in cls_c])) / float(1e-10 + N)
        invocation_truly = float(sum([1 if v else 0 for v in cls_t])) / float(1e-10 + N)

        # re of A, re of A with C
        mean_relative_error_of_A = sum(re) / float(1e-10 + len(re))
        mean_relative_error_of_A_with_C = sum(re_c) / (1e-10 + len(re_c))

        return {
            'accuracy_of_C': accuracy_of_C,
            'recall_of_C': recall_of_C,
            'invocation_of_C': invocation_of_C,
            'invocation_truly': invocation_truly,
            'mean_relative_error_of_A': mean_relative_error_of_A,
            'mean_relative_error_of_A_with_C': mean_relative_error_of_A_with_C
        }
Пример #2
0
def main(benchmark, weights_file):
    X0, Y0, X1, Y1 = load_data(benchmark)
    A = AcceleratorModel([1, 4, 4, 2])
    A.load_weights(weights_file)

    Y2 = A.predict(X1)
    print A.evaluate(X1, Y1)

    re = [error.relative_error(Y1[i], Y2[i]) for i in xrange(len(X1))]
    count = [0] * 101
    for v in re:
        count[int(math.floor(v * 100))] += 1
    s = sum(count)
    count = [float(v) / s for v in count]
    for i in range(101):
        print i, count[i]

    for i in xrange(len(X1)):
        print Y1[i], Y2[i], error.relative_error(Y1[i], Y2[i])
Пример #3
0
def main(benchmark, weights_file):
    X0, Y0, X1, Y1 = load_data(benchmark)
    A = AcceleratorModel([6, 8, 8,
                          1])  #Change this to the model by the network
    A.load_weights(weights_file)

    Y2 = A.predict(X1)
    print(A.evaluate(X1, Y1))

    re = [error.relative_error(Y1[i], Y2[i]) for i in range(len(X1))]
    count = [0] * 101
    for v in re:
        count[int(math.floor(v * 100))] += 1
    s = sum(count)
    count = [float(v) / s for v in count]
    for i in range(101):
        print(i, count[i])

    for i in range(len(X1)):
        print(Y1[i], Y2[i], error.relative_error(Y1[i], Y2[i]))
Пример #4
0
def train_origin(A, X0, Y0, X1, Y1, epoch, batch_size, output_name):

    A.fit(X0, Y0, nb_epoch=epoch, batch_size=batch_size)
    acc = A.predict(X1)

    result_num = [0 for i in range(100)]
    result_sum = 0
    for i in range(len(X1)):
        rate = 0.01
        tmp_re = error.relative_error(Y1[i], acc[i])
        result_sum += tmp_re
        for j in range(100):
            if tmp_re <= rate:
                result_num[j] += 1
            rate += 0.01

    result_mre = result_sum / float(len(X1))
    result_re_list = [(100.0 * result_num[x] / float(len(X1))) for x in range(len(result_num))]

    print result_mre
    print result_re_list

    f_results = open('../results/origin/{}.csv'.format(output_name), 'w')
    f_results.write('mre,{}\n'.format(result_mre))
    f_results.write('re_bound,re_percent\n')
    for i in range(100):
        f_results.write('{}%,{:.3f}%\n'.format(i + 1, result_re_list[i]))
        f_results.flush()
    f_results.close()
    A.save_weights('../weights/origin/{}.weights'.format(output_name), overwrite=True)
    keras_to_fann(A, 'fann_sample.nn', '../fann_model/{}.nn'.format(output_name))




    '''
Пример #5
0
 def accept(v0, v1):
     return error.relative_error(
         v0, v1) <= re_bound if eb_type == 1 else error.absolute_error(
             v0, v1) <= re_bound
Пример #6
0
 def accept(v0, v1):
     return error.relative_error(v0, v1) <= re_bound