def create_task_event(self, type, iteration): return { "worker": "test", "type": type, "task": self.task_id, "iter": iteration, "timestamp": es_factory.get_timestamp_millis() }
def _create_task_event(self, type_, task, iteration): return { "worker": "test", "type": type_, "task": task, "iter": iteration, "timestamp": es_factory.get_timestamp_millis(), }
def _create_task_event(type_, task, iteration, **kwargs): return { "worker": "test", "type": type_, "task": task, "iter": iteration, "timestamp": kwargs.get("timestamp") or es_factory.get_timestamp_millis(), **kwargs, }
def add_events(self, company_id, events, worker, allow_locked_tasks=False): actions = [] task_ids = set() task_iteration = defaultdict(lambda: 0) task_last_events = nested_dict( 3, dict) # task_id -> metric_hash -> variant_hash -> MetricEvent for event in events: # remove spaces from event type if "type" not in event: raise errors.BadRequest("Event must have a 'type' field", event=event) event_type = event["type"].replace(" ", "_") if event_type not in EVENT_TYPES: raise errors.BadRequest( "Invalid event type {}".format(event_type), event=event, types=EVENT_TYPES, ) event["type"] = event_type # @timestamp indicates the time the event is written, not when it happened event["@timestamp"] = es_factory.get_es_timestamp_str() # for backward bomba-tavili-tea if "ts" in event: event["timestamp"] = event.pop("ts") # set timestamp and worker if not sent if "timestamp" not in event: event["timestamp"] = es_factory.get_timestamp_millis() if "worker" not in event: event["worker"] = worker # force iter to be a long int iter = event.get("iter") if iter is not None: iter = int(iter) event["iter"] = iter # used to have "values" to indicate array. no need anymore if "values" in event: event["value"] = event["values"] del event["values"] index_name = EventMetrics.get_index_name(company_id, event_type) es_action = { "_op_type": "index", # overwrite if exists with same ID "_index": index_name, "_type": "event", "_source": event, } # for "log" events, don't assing custom _id - whatever is sent, is written (not overwritten) if event_type != "log": es_action["_id"] = self._get_event_id(event) else: es_action["_id"] = dbutils.id() task_id = event.get("task") if task_id is not None: es_action["_routing"] = task_id task_ids.add(task_id) if (iter is not None and event.get("metric") not in self._skip_iteration_for_metric): task_iteration[task_id] = max(iter, task_iteration[task_id]) if event_type == EventType.metrics_scalar.value: self._update_last_metric_event_for_task( task_last_events=task_last_events, task_id=task_id, event=event) else: es_action["_routing"] = task_id actions.append(es_action) if task_ids: # verify task_ids with translate_errors_context(), TimingContext( "mongo", "task_by_ids"): extra_msg = None query = Q(id__in=task_ids, company=company_id) if not allow_locked_tasks: query &= Q(status__nin=LOCKED_TASK_STATUSES) extra_msg = "or task published" res = Task.objects(query).only("id") if len(res) < len(task_ids): invalid_task_ids = tuple( set(task_ids) - set(r.id for r in res)) raise errors.bad_request.InvalidTaskId( extra_msg, company=company_id, ids=invalid_task_ids) errors_in_bulk = [] added = 0 chunk_size = 500 with translate_errors_context(), TimingContext("es", "events_add_batch"): # TODO: replace it with helpers.parallel_bulk in the future once the parallel pool leak is fixed with closing( helpers.streaming_bulk( self.es, actions, chunk_size=chunk_size, # thread_count=8, refresh=True, )) as it: for success, info in it: if success: added += chunk_size else: errors_in_bulk.append(info) remaining_tasks = set() now = datetime.utcnow() for task_id in task_ids: # Update related tasks. For reasons of performance, we prefer to update all of them and not only those # who's events were successful updated = self._update_task( company_id=company_id, task_id=task_id, now=now, iter_max=task_iteration.get(task_id), last_events=task_last_events.get(task_id), ) if not updated: remaining_tasks.add(task_id) continue if remaining_tasks: TaskBLL.set_last_update(remaining_tasks, company_id, last_update=now) # Compensate for always adding chunk_size on success (last chunk is probably smaller) added = min(added, len(actions)) return added, errors_in_bulk
def add_events(self, company_id, events, worker, allow_locked_tasks=False) -> Tuple[int, int, dict]: actions = [] task_ids = set() task_iteration = defaultdict(lambda: 0) task_last_scalar_events = nested_dict( 3, dict) # task_id -> metric_hash -> variant_hash -> MetricEvent task_last_events = nested_dict( 3, dict) # task_id -> metric_hash -> event_type -> MetricEvent errors_per_type = defaultdict(int) valid_tasks = self._get_valid_tasks( company_id, task_ids={ event["task"] for event in events if event.get("task") is not None }, allow_locked_tasks=allow_locked_tasks, ) for event in events: # remove spaces from event type event_type = event.get("type") if event_type is None: errors_per_type["Event must have a 'type' field"] += 1 continue event_type = event_type.replace(" ", "_") if event_type not in EVENT_TYPES: errors_per_type[f"Invalid event type {event_type}"] += 1 continue task_id = event.get("task") if task_id is None: errors_per_type["Event must have a 'task' field"] += 1 continue if task_id not in valid_tasks: errors_per_type["Invalid task id"] += 1 continue event["type"] = event_type # @timestamp indicates the time the event is written, not when it happened event["@timestamp"] = es_factory.get_es_timestamp_str() # for backward bomba-tavili-tea if "ts" in event: event["timestamp"] = event.pop("ts") # set timestamp and worker if not sent if "timestamp" not in event: event["timestamp"] = es_factory.get_timestamp_millis() if "worker" not in event: event["worker"] = worker # force iter to be a long int iter = event.get("iter") if iter is not None: iter = int(iter) event["iter"] = iter # used to have "values" to indicate array. no need anymore if "values" in event: event["value"] = event["values"] del event["values"] event["metric"] = event.get("metric") or "" event["variant"] = event.get("variant") or "" index_name = EventMetrics.get_index_name(company_id, event_type) es_action = { "_op_type": "index", # overwrite if exists with same ID "_index": index_name, "_type": "event", "_source": event, } # for "log" events, don't assing custom _id - whatever is sent, is written (not overwritten) if event_type != "log": es_action["_id"] = self._get_event_id(event) else: es_action["_id"] = dbutils.id() es_action["_routing"] = task_id task_ids.add(task_id) if (iter is not None and event.get("metric") not in self._skip_iteration_for_metric): task_iteration[task_id] = max(iter, task_iteration[task_id]) self._update_last_metric_events_for_task( last_events=task_last_events[task_id], event=event, ) if event_type == EventType.metrics_scalar.value: self._update_last_scalar_events_for_task( last_events=task_last_scalar_events[task_id], event=event) actions.append(es_action) added = 0 if actions: chunk_size = 500 with translate_errors_context(), TimingContext( "es", "events_add_batch"): # TODO: replace it with helpers.parallel_bulk in the future once the parallel pool leak is fixed with closing( helpers.streaming_bulk( self.es, actions, chunk_size=chunk_size, # thread_count=8, refresh=True, )) as it: for success, info in it: if success: added += chunk_size else: errors_per_type[ "Error when indexing events batch"] += 1 remaining_tasks = set() now = datetime.utcnow() for task_id in task_ids: # Update related tasks. For reasons of performance, we prefer to update # all of them and not only those who's events were successful updated = self._update_task( company_id=company_id, task_id=task_id, now=now, iter_max=task_iteration.get(task_id), last_scalar_events=task_last_scalar_events.get( task_id), last_events=task_last_events.get(task_id), ) if not updated: remaining_tasks.add(task_id) continue if remaining_tasks: TaskBLL.set_last_update(remaining_tasks, company_id, last_update=now) # Compensate for always adding chunk_size on success (last chunk is probably smaller) added = min(added, len(actions)) if not added: raise errors.bad_request.EventsNotAdded(**errors_per_type) errors_count = sum(errors_per_type.values()) return added, errors_count, errors_per_type