Пример #1
0
def preprocess_BNLI_data(input_file, targetdir, worddict, labeldict):
    """
    Preprocess the BNLI data set so it can be used to test a model trained
    on SNLI.

    Args:
        inputdir: The path to the file containing the Breaking NLI (BNLI) data.
        target_dir: The path to the directory where the preprocessed Breaking
            NLI data must be saved.
        worddict: The path to the pickled worddict used for preprocessing the
            training data on which models were trained before being tested on
            BNLI.
        labeldict: The dict of labels used for the training data on which
            models were trained before being tested on BNLI.
    """
    if not os.path.exists(targetdir):
        os.makedirs(targetdir)

    output_file = os.path.join(targetdir, "bnli.txt")

    print(20 * "=", " Preprocessing Breaking NLI data set ", 20 * "=")
    print("\t* Tranforming jsonl data to txt...")
    jsonl_to_txt(input_file, output_file)

    preprocessor = Preprocessor(labeldict=labeldict)

    with open(worddict, 'rb') as pkl:
        wdict = pickle.load(pkl)
    preprocessor.worddict = wdict

    print("\t* Reading txt data...")
    data = preprocessor.read_data(output_file)

    print("\t* Transforming words in premises and hypotheses to indices...")
    transformed_data = preprocessor.transform_to_indices(data)

    print("\t* Saving result...")
    with open(os.path.join(targetdir, "bnli_data.pkl"), 'wb') as pkl_file:
        pickle.dump(transformed_data, pkl_file)
Пример #2
0
def preprocess_MNLI_data(inputdir,
                         embeddings_file,
                         targetdir,
                         lowercase=False,
                         ignore_punctuation=False,
                         num_words=None,
                         stopwords=[],
                         labeldict={},
                         bos=None,
                         eos=None):
    """
    Preprocess the data from the MultiNLI corpus so it can be used by the
    ESIM model.
    Compute a worddict from the train set, and transform the words in
    the sentences of the corpus to their indices, as well as the labels.
    Build an embedding matrix from pretrained word vectors.
    The preprocessed data is saved in pickled form in some target directory.
    Args:
        inputdir: The path to the directory containing the NLI corpus.
        embeddings_file: The path to the file containing the pretrained
            word vectors that must be used to build the embedding matrix.
        targetdir: The path to the directory where the preprocessed data
            must be saved.
        lowercase: Boolean value indicating whether to lowercase the premises
            and hypotheseses in the input data. Defautls to False.
        ignore_punctuation: Boolean value indicating whether to remove
            punctuation from the input data. Defaults to False.
        num_words: Integer value indicating the size of the vocabulary to use
            for the word embeddings. If set to None, all words are kept.
            Defaults to None.
        stopwords: A list of words that must be ignored when preprocessing
            the data. Defaults to an empty list.
        bos: A string indicating the symbol to use for beginning of sentence
            tokens. If set to None, bos tokens aren't used. Defaults to None.
        eos: A string indicating the symbol to use for end of sentence tokens.
            If set to None, eos tokens aren't used. Defaults to None.
    """
    if not os.path.exists(targetdir):
        os.makedirs(targetdir)

    # Retrieve the train, dev and test data files from the dataset directory.
    train_file = ""
    matched_dev_file = ""
    mismatched_dev_file = ""
    # matched_test_file = ""
    # mismatched_test_file = ""
    for file in os.listdir(inputdir):
        if fnmatch.fnmatch(file, "*_train.txt"):
            train_file = file
        elif fnmatch.fnmatch(file, "*_dev_matched.txt"):
            matched_dev_file = file
        elif fnmatch.fnmatch(file, "*_dev_mismatched.txt"):
            mismatched_dev_file = file
        # elif fnmatch.fnmatch(file, "*_test_matched_unlabeled.txt"):
        #     matched_test_file = file
        # elif fnmatch.fnmatch(file, "*_test_mismatched_unlabeled.txt"):
        #     mismatched_test_file = file

    # -------------------- Train data preprocessing -------------------- #
    preprocessor = Preprocessor(lowercase=lowercase,
                                ignore_punctuation=ignore_punctuation,
                                num_words=num_words,
                                stopwords=stopwords,
                                labeldict=labeldict,
                                bos=bos,
                                eos=eos)

    print(20 * "=", " Preprocessing train set ", 20 * "=")
    print("\t* Reading data...")
    data = preprocessor.read_data(os.path.join(inputdir, train_file))

    print("\t* Computing worddict and saving it...")
    preprocessor.build_worddict(data)
    with open(os.path.join(targetdir, "worddict.pkl"), "wb") as pkl_file:
        pickle.dump(preprocessor.worddict, pkl_file)

    print("\t* Transforming words in premises and hypotheses to indices...")
    transformed_data = preprocessor.transform_to_indices(data)
    print("\t* Saving result...")
    with open(os.path.join(targetdir, "train_data.pkl"), "wb") as pkl_file:
        pickle.dump(transformed_data, pkl_file)

    # -------------------- Validation data preprocessing -------------------- #
    print(20 * "=", " Preprocessing dev sets ", 20 * "=")
    print("\t* Reading matched dev data...")
    data = preprocessor.read_data(os.path.join(inputdir, matched_dev_file))

    print("\t* Transforming words in premises and hypotheses to indices...")
    transformed_data = preprocessor.transform_to_indices(data)
    print("\t* Saving result...")
    with open(os.path.join(targetdir, "matched_dev_data.pkl"),
              "wb") as pkl_file:
        pickle.dump(transformed_data, pkl_file)

    print("\t* Reading mismatched dev data...")
    data = preprocessor.read_data(os.path.join(inputdir, mismatched_dev_file))

    print("\t* Transforming words in premises and hypotheses to indices...")
    transformed_data = preprocessor.transform_to_indices(data)
    print("\t* Saving result...")
    with open(os.path.join(targetdir, "mismatched_dev_data.pkl"),
              "wb") as pkl_file:
        pickle.dump(transformed_data, pkl_file)

    # -------------------- Test data preprocessing -------------------- #
    # print(20*"=", " Preprocessing test sets ", 20*"=")
    # print("\t* Reading matched test data...")
    # data = preprocessor.read_data(os.path.join(inputdir, matched_test_file))
    #
    # print("\t* Transforming words in premises and hypotheses to indices...")
    # transformed_data = preprocessor.transform_to_indices(data)
    # print("\t* Saving result...")
    # with open(os.path.join(targetdir, "matched_test_data.pkl"), "wb") as pkl_file:
    #     pickle.dump(transformed_data, pkl_file)
    #
    # print("\t* Reading mismatched test data...")
    # data = preprocessor.read_data(os.path.join(inputdir, mismatched_test_file))
    #
    # print("\t* Transforming words in premises and hypotheses to indices...")
    # transformed_data = preprocessor.transform_to_indices(data)
    # print("\t* Saving result...")
    # with open(os.path.join(targetdir, "mismatched_test_data.pkl"), "wb") as pkl_file:
    #     pickle.dump(transformed_data, pkl_file)

    # -------------------- Embeddings preprocessing -------------------- #
    print(20 * "=", " Preprocessing embeddings ", 20 * "=")
    print("\t* Building embedding matrix and saving it...")
    embed_matrix = preprocessor.build_embedding_matrix(embeddings_file)
    with open(os.path.join(targetdir, "embeddings.pkl"), "wb") as pkl_file:
        pickle.dump(embed_matrix, pkl_file)
Пример #3
0
def preprocess_SNLI_data(inputdir,
                         targetdir,
                         lowercase=False,
                         ignore_punctuation=False,
                         num_words=None,
                         stopwords=[],
                         labeldict={}):
    """
    Preprocess the data from the MedNLI corpus so it can be used by the
    ESIM model.
    The preprocessed data is saved in pickled form in some target directory.

    Args:
        inputdir: The path to the directory containing the NLI corpus.
        embeddings_file: The path to the file containing the pretrained
            word vectors that must be used to build the embedding matrix.
        targetdir: The path to the directory where the preprocessed data
            must be saved.
        lowercase: Boolean value indicating whether to lowercase the premises
            and hypotheseses in the input data. Defautls to False.
        ignore_punctuation: Boolean value indicating whether to remove
            punctuation from the input data. Defaults to False.
        num_words: Integer value indicating the size of the vocabulary to use
            for the word embeddings. If set to None, all words are kept.
            Defaults to None.
        stopwords: A list of words that must be ignored when preprocessing
            the data. Defaults to an empty list.
            If set to None, eos tokens aren't used. Defaults to None.
    """
    if not os.path.exists(targetdir):
        os.makedirs(targetdir)

    # Retrieve the train, dev and test data files from the dataset directory.
    train_file = ""
    dev_file = ""
    test_file = ""
    for file in os.listdir(inputdir):
        if fnmatch.fnmatch(file, "train*"):
            train_file = file
        elif fnmatch.fnmatch(file, "dev*"):
            dev_file = file
        elif fnmatch.fnmatch(file, "test*"):
            test_file = file

    # -------------------- Train data preprocessing -------------------- #
    preprocessor = Preprocessor(lowercase=lowercase,
                                ignore_punctuation=ignore_punctuation,
                                num_words=num_words,
                                stopwords=stopwords,
                                labeldict=labeldict)

    print(20 * "=", " Preprocessing train set ", 20 * "=")
    print("\t* Reading data...")
    data = preprocessor.read_data(os.path.join(inputdir, train_file))

    print("\t* Saving result...")
    with open(os.path.join(targetdir, "train_data.pkl"), "wb") as pkl_file:
        pickle.dump(data, pkl_file)

    # -------------------- Tokenization preprocessing -------------------- #
    print(20 * "=", " Preprocessing tokenization", 20 * "=")
    print("\t* Creating tokenization and saving it...")
    preprocessor.create_tokenizations(
        data, os.path.join(targetdir, "train_elmo.pkl"),
        os.path.join(targetdir, "train_bert.pkl"))

    # -------------------- Validation data preprocessing -------------------- #
    print(20 * "=", " Preprocessing dev set ", 20 * "=")
    print("\t* Reading data...")
    data = preprocessor.read_data(os.path.join(inputdir, dev_file))

    print("\t* Saving result...")
    with open(os.path.join(targetdir, "dev_data.pkl"), "wb") as pkl_file:
        pickle.dump(data, pkl_file)

    # -------------------- Tokenization preprocessing -------------------- #
    print(20 * "=", " Preprocessing tokenization", 20 * "=")
    print("\t* Creating tokenization and saving it...")
    preprocessor.create_tokenizations(data,
                                      os.path.join(targetdir, "dev_elmo.pkl"),
                                      os.path.join(targetdir, "dev_bert.pkl"))

    # -------------------- Test data preprocessing -------------------- #
    print(20 * "=", " Preprocessing test set ", 20 * "=")
    print("\t* Reading data...")
    data = preprocessor.read_data(os.path.join(inputdir, test_file))

    print("\t* Saving result...")
    with open(os.path.join(targetdir, "test_data.pkl"), "wb") as pkl_file:
        pickle.dump(data, pkl_file)

    # -------------------- Tokenization preprocessing -------------------- #
    print(20 * "=", " Preprocessing tokenization", 20 * "=")
    print("\t* Creating tokenization and saving it...")
    preprocessor.create_tokenizations(data,
                                      os.path.join(targetdir, "test_elmo.pkl"),
                                      os.path.join(targetdir, "test_bert.pkl"))