Пример #1
0
def test_anomalies_preserve_metadata(period, reference, standardize=False):
    cube = make_map_data(number_years=2)
    cube.var_name = "si"
    cube.units = "m"
    metadata = copy.deepcopy(cube.metadata)
    result = anomalies(cube, period, reference, standardize=standardize)
    assert result.metadata == metadata
    for coord_cube, coord_res in zip(cube.coords(), result.coords()):
        if coord_cube.has_bounds() and coord_res.has_bounds():
            assert_array_equal(coord_cube.bounds, coord_res.bounds)
        assert coord_cube == coord_res
Пример #2
0
def test_anomalies(period, reference, standardize=False):
    cube = make_map_data(number_years=2)
    result = anomalies(cube, period, reference, standardize=standardize)
    if reference is None:
        if period == 'full':
            anom = np.arange(-359.5, 360)
        elif period == 'day':
            anom = np.concatenate((np.ones(360) * -180, np.ones(360) * 180))
        elif period == 'month':
            anom1 = np.concatenate(
                [np.arange(-194.5, -165) for x in range(12)])
            anom2 = np.concatenate([np.arange(165.5, 195) for x in range(12)])
            anom = np.concatenate((anom1, anom2))
        elif period == 'season':
            anom = np.concatenate((
                np.arange(-314.5, -255),
                np.arange(-224.5, -135),
                np.arange(-224.5, -135),
                np.arange(-224.5, -135),
                np.arange(15.5, 105),
                np.arange(135.5, 225),
                np.arange(135.5, 225),
                np.arange(135.5, 225),
                np.arange(375.5, 405),
            ))
    else:
        if period == 'full':
            anom = np.arange(-179.5, 540)
        elif period == 'day':
            anom = np.concatenate((np.zeros(360), np.ones(360) * 360))
        elif period == 'month':
            anom1 = np.concatenate([np.arange(-14.5, 15) for x in range(12)])
            anom2 = np.concatenate([np.arange(345.5, 375) for x in range(12)])
            anom = np.concatenate((anom1, anom2))
        elif period == 'season':
            anom = np.concatenate((
                np.arange(-374.5, -315),
                np.arange(-44.5, 45),
                np.arange(-44.5, 45),
                np.arange(-44.5, 45),
                np.arange(-44.5, 45),
                np.arange(315.5, 405),
                np.arange(315.5, 405),
                np.arange(315.5, 405),
                np.arange(315.5, 345),
            ))
    zeros = np.zeros_like(anom)
    print(anom)
    print(result.data[0, 1, ...])
    assert_array_equal(result.data, np.array([[zeros, anom], [anom, zeros]]))
    assert_array_equal(result.coord('time').points, cube.coord('time').points)
Пример #3
0
def test_standardized_anomalies(period, standardize=True):
    cube = make_map_data(number_years=2)
    result = anomalies(cube, period, standardize=standardize)
    if period == 'full':
        expected_anomalies = (cube.data -
                              np.mean(cube.data, axis=2, keepdims=True))
        if standardize:
            # NB: default behaviour for np.std is ddof=0, whereas
            #     default behaviour for iris.analysis.STD_DEV is ddof=1
            expected_stdanomalies = expected_anomalies / np.std(
                expected_anomalies, axis=2, keepdims=True, ddof=1)
            expected = np.ma.masked_invalid(expected_stdanomalies)
            assert_array_equal(result.data, expected)
        else:
            expected = np.ma.masked_invalid(expected_anomalies)
            assert_array_equal(result.data, expected)
Пример #4
0
def test_anomalies(period):
    cube = make_map_data(number_years=2)
    result = anomalies(cube, period)
    if period == 'full':
        anom = np.arange(-359.5, 360, 1)
        zeros = np.zeros_like(anom)
        assert_array_equal(result.data, np.array([[zeros, anom], [anom,
                                                                  zeros]]))
    elif period == 'day':
        anom = np.concatenate((np.ones(360) * -180, np.ones(360) * 180))
        zeros = np.zeros_like(anom)
        assert_array_equal(result.data, np.array([[zeros, anom], [anom,
                                                                  zeros]]))
    elif period == 'month':
        anom1 = np.concatenate([np.arange(-194.5, -165) for x in range(12)])
        anom2 = np.concatenate([np.arange(165.5, 195) for x in range(12)])
        anom = np.concatenate((anom1, anom2))
        zeros = np.zeros_like(anom)
        print(result.data[0, 1])
        assert_array_equal(result.data, np.array([[zeros, anom], [anom,
                                                                  zeros]]))
    elif period == 'season':
        anom = np.concatenate((
            np.arange(-314.5, -255),
            np.arange(-224.5, -135),
            np.arange(-224.5, -135),
            np.arange(-224.5, -135),
            np.arange(15.5, 105),
            np.arange(135.5, 225),
            np.arange(135.5, 225),
            np.arange(135.5, 225),
            np.arange(375.5, 405),
        ))
        zeros = np.zeros_like(anom)
        print(result.data[0, 1])
        assert_array_equal(result.data, np.array([[zeros, anom], [anom,
                                                                  zeros]]))
    assert_array_equal(result.coord('time').points, cube.coord('time').points)