Пример #1
0
def main():
    # set test video list
#     video_list = ['CNNW_20160107_180000_Wolf']

    videos = Video.objects.filter(threeyears_dataset=True).all()
    addtional_field = pickle.load(open('/app/data/addtional_field.pkl', 'rb'))
    videos = [video for video in videos if addtional_field[video.id]['valid_transcript']]
    videos = videos[20000:30000]

    # todo: remove videos whose result is already dumped
    
    # get audio length
#     pkl_path = '/app/data/audio_length_dict.pkl'
#     audio_length_dict = pickle.load(open(pkl_path, 'rb'))
#     audio_length = [audio_length_dict[video_name] for video_name in video_list]
    
    # load audios from videos
    audios = [audio.AudioSource(video.for_scannertools(), 
                                frame_size=SEG_LENGTH, 
                                duration=addtional_field[video.id]['audio_duration']) 
              for video in videos]
    
    # set up transcripts 
    captions = [audio.CaptionSource('tvnews/subs10/'+video.item_name(), 
                                    max_time=addtional_field[video.id]['audio_duration'], 
                                    window_size=SEG_LENGTH) 
                for video in videos]
    
    # set up run opts
    run_opts = {'pipeline_instances_per_node': 32, 'checkpoint_frequency': 5}
    
    # set up align opts
    align_opts = {'seg_length' : 60,
                  'max_misalign' : 10,
                  'num_thread' : 1,
                  'exhausted' : False,
                  'align_dir' : None,
                  'res_path' : None,
#                   'align_dir' : '/app/data/subs/orig/',
#                   'res_path' : '/app/result/test_align_3y.pkl',
    }
    
    '''local run'''
#     db = scannerpy.Database()
#     transcript_alignment.align_transcript(db, videos, audios, captions, run_opts, align_opts, cache=False) 
    
    '''kubernete run'''
    cfg = cluster_config(
        num_workers=100,
        worker=worker_config('n1-standard-32'))
    
    with make_cluster(cfg, no_delete=True) as db_wrapper:
        db = db_wrapper.db
        transcript_alignment.align_transcript_pipeline(db=db, audio=audios, captions=captions, cache=False, 
                                                       run_opts=run_opts, align_opts=align_opts)
Пример #2
0
LABELED_TAG, _ = Tag.objects.get_or_create(name='opticalflowhists:labeled')

bad_movie_ids = set([])

#labeled_videos = set([videotag.video_id
#        for videotag in VideoTag.objects.filter(tag=LABELED_TAG).all()])
labeled_videos = set()
all_videos = set(
    [video.id for video in Video.objects.filter(ignore_film=False).all()])
video_ids = sorted(
    list(all_videos.difference(labeled_videos).difference(bad_movie_ids)))

videos = Video.objects.filter(id__in=video_ids).order_by('id')

cfg = cluster_config(num_workers=100, worker=worker_config('n1-standard-32'))
with make_cluster(cfg, no_delete=True) as db_wrapper:
    db = db_wrapper.db
    #if True:
    #    db_wrapper = ScannerWrapper.create()
    #    db = db_wrapper.db

    histograms = st.histograms.compute_flow_histograms(
        db,
        videos=[video.for_scannertools() for video in list(videos)],
        run_opts={
            'work_packet_size': 4,
            'pipeline_instances_per_node': 2,
            'io_packet_size': 2496,
            'checkpoint_frequency': 1,
            'tasks_in_queue_per_pu': 2
        })
Пример #3
0
def bench(name, args, run_pipeline, configs, force=False, no_delete=False):

    sample_size = len(args['videos'])

    def run_name(cluster_config, job_config):
        worker_type = cluster_config.worker.type
        return '{name}-{cpu}cpu-{mem}mem-{batch}batch-{wpkt}wpkt-{iopkt}iopkt-{ldwk}ldwk-{svwk}svwk-{vid}vid'.format(
            name=name,
            cpu=worker_type.get_cpu(),
            mem=worker_type.get_mem(),
            batch=job_config.batch,
            wpkt=job_config.work_packet_size,
            iopkt=job_config.io_packet_size,
            ldwk=cluster_config.num_load_workers,
            svwk=cluster_config.num_save_workers,
            vid=sample_size)

    def run_config(args, db_wrapper, job_config):
        db = db_wrapper.db

        # Start the Scanner job
        log.info('Starting Scanner job')

        run_opts = {
            'io_packet_size': job_config.io_packet_size,
            'work_packet_size': job_config.work_packet_size,
        }
        ppw = job_config.pipelines_per_worker
        if ppw != -1:
            run_opts['pipeline_instances_per_node'] = ppw

        run_pipeline(db, detach=True, run_opts=run_opts, **args)

        # Wait until it succeeds or crashes
        start = now()
        log.info('Monitoring cluster')
        result, metrics = db_wrapper.cluster.monitor(db)
        end = now() - start

        # If we crashed:
        if not result:

            # Restart the cluster if it's in a bad state
            db_wrapper.cluster.start()

            raise TestFailure("Out of memory")

        # Write out profile if run succeeded
        outputs = run_pipeline(db, no_execute=True, **args)
        try:
            outputs[0]._column._table.profiler().write_trace(
                '/app/data/traces/{}.trace'.format(
                    run_name(db_wrapper.cluster.config(), job_config)))
        except Exception:
            log.error('Failed to write trace')
            traceback.print_exc()

        return end, pd.DataFrame(metrics)

    def test_config(args, db_wrapper, cluster_config, job_config):
        time, metrics = run_config(args, db_wrapper, job_config)

        if time is not None:
            price_per_hour = cluster_config.price(no_master=True)
            price_per_video = (time /
                               3600.0) * price_per_hour / float(sample_size)
            return price_per_video, metrics
        else:
            return None

    results = []

    for (cluster_config, job_configs) in configs:

        # Only bring up the cluster if there exists a job config that hasn't been computed
        if not force and all([
                pcache.has(run_name(cluster_config, job_config))
                for job_config in job_configs
        ]):
            results.append([
                pcache.get(run_name(cluster_config, job_config))
                for job_config in job_configs
            ])

        else:
            with make_cluster(cluster_config,
                              no_delete=no_delete) as db_wrapper:
                log.info('Cluster config: {}'.format(cluster_config))

                def try_config(job_config):
                    log.info('Job config: {}'.format(job_config))
                    try:
                        return test_config(args, db_wrapper, cluster_config,
                                           job_config)
                    except TestFailure as e:
                        print(e)
                        return (str(e), None)
                    except Exception as e:
                        traceback.print_exc()
                        return (traceback.format_exc(), None)

                def try_config_cached(job_config):
                    return pcache.get(run_name(cluster_config, job_config),
                                      force=force,
                                      fn=lambda: try_config(job_config))

                results.append(list(map(try_config_cached, job_configs)))

    # Don't do this at top-level in case this file is incidentally imported into Jupyter
    import matplotlib
    matplotlib.use('agg')
    import matplotlib.pyplot as plt

    def plot(metrics, name):
        ax = metrics.plot('TIME', name)
        ax.set_title(name)
        ax.set_ylabel('Percent')
        ax.set_xlabel('Sample')
        fig = ax.get_figure()
        fig.tight_layout()
        fig.savefig('/tmp/graph.svg')
        fig.clf()
        return open('/tmp/graph.svg', 'r').read()

    report_template = '''
    <!DOCTYPE html>
    <html>
      <head>
        <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta.2/css/bootstrap.min.css" integrity="sha384-PsH8R72JQ3SOdhVi3uxftmaW6Vc51MKb0q5P2rRUpPvrszuE4W1povHYgTpBfshb" crossorigin="anonymous">
        <style>
          svg {{ width: 50%; margin: 0; float: left; }}
          p {{ margin-bottom: 0; }}
        </style>
      </head>
      <body>
        <div class="container">
          <h1>Scanner benchmark report</h1>
          {report}
        </div>
      </body>
    </html>
    '''

    blocks = ''
    for ((cluster_config, job_configs),
         cluster_results) in zip(configs, results):
        for (job_config, (job_result, metrics)) in zip(job_configs,
                                                       cluster_results):
            if metrics is None:
                blocks += '<div><h3>{name}</h3><p>{result}</p></div>'.format(
                    name=run_name(cluster_config, job_config),
                    result=job_result)
                continue

            cpu = plot(metrics, 'CPU%')
            mem = plot(metrics, 'MEMORY%')
            block = '''
            <div>
              <h3>{name}</h3>
              <p>${result:.05f}/video</p>
              <div>
                {cpu}
                {mem}
              </div>
            </div>
            '''.format(name=run_name(cluster_config, job_config),
                       result=job_result,
                       cpu=cpu,
                       mem=mem)
            blocks += block

    report = report_template.format(report=blocks)

    with open(
            '/app/data/benchmarks/{}-{}.html'.format(
                name, strftime('%Y-%m-%d-%H-%M')), 'w') as f:
        f.write(report)

    # Collect all traces into a tarfile
    sp.check_call('cd /app/data && tar -czf bench.tar.gz traces benchmarks',
                  shell=True)

    # Let desktop know bench is complete, and should download benchmark files
    notifier.notify('Benchmark complete', action='bench')
Пример #4
0
            'bboxes':
            self._db.ops.PrepareClothingBbox(
                frame=self._sources['frame_sampled'].op, bboxes=bboxes)
        }


detect_clothing_bboxes = ClothingBboxesPipeline.make_runner()
detect_clothing = ClothingDetectionPipeline.make_runner()

videos = list(Video.objects.all().order_by('id'))

cfg = cluster_config(num_workers=100,
                     worker=worker_config('n1-standard-16', gpu=1),
                     pipelines=[clothing_detection.ClothingDetectionPipeline])

with make_cluster(cfg, sql_pool=2, no_delete=True) as db_wrapper:
    # if True:
    #     db_wrapper = ScannerWrapper.create()

    db = db_wrapper.db

    print('Fetching frames')
    frames = pcache.get('clothing_frames',
                        lambda: par_for(frames_for_video, videos, workers=8))
    videos, frames = unzip([(v, f) for (v, f) in zip(videos, frames)
                            if len(f) > 0])
    videos = list(videos)
    frames = list(frames)

    videos = videos
    frames = frames