def train(args): """Train with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning("cuda is not available") # get input and output dimension info with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]["output"][1]["shape"][1]) odim = int(valid_json[utts[0]]["output"][0]["shape"][1]) logging.info("#input dims : " + str(idim)) logging.info("#output dims: " + str(odim)) # specify model architecture model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) assert isinstance(model, MTInterface) # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + "/model.json" with open(model_conf, "wb") as f: logging.info("writing a model config file to " + model_conf) f.write( json.dumps((idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True).encode("utf_8")) for key in sorted(vars(args).keys()): logging.info("ARGS: " + key + ": " + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: if args.batch_size != 0: logging.warning( "batch size is automatically increased (%d -> %d)" % (args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") if args.train_dtype in ("float16", "float32", "float64"): dtype = getattr(torch, args.train_dtype) else: dtype = torch.float32 model = model.to(device=device, dtype=dtype) logging.warning( "num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format( sum(p.numel() for p in model.parameters()), sum(p.numel() for p in model.parameters() if p.requires_grad), sum(p.numel() for p in model.parameters() if p.requires_grad) * 100.0 / sum(p.numel() for p in model.parameters()), )) # Setup an optimizer if args.opt == "adadelta": optimizer = torch.optim.Adadelta(model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == "adam": optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) elif args.opt == "noam": from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt( model.parameters(), args.adim, args.transformer_warmup_steps, args.transformer_lr, ) else: raise NotImplementedError("unknown optimizer: " + args.opt) # setup apex.amp if args.train_dtype in ("O0", "O1", "O2", "O3"): try: from apex import amp except ImportError as e: logging.error( f"You need to install apex for --train-dtype {args.train_dtype}. " "See https://github.com/NVIDIA/apex#linux") raise e if args.opt == "noam": model, optimizer.optimizer = amp.initialize( model, optimizer.optimizer, opt_level=args.train_dtype) else: model, optimizer = amp.initialize(model, optimizer, opt_level=args.train_dtype) use_apex = True else: use_apex = False # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # Setup a converter converter = CustomConverter() # read json data with open(args.train_json, "rb") as f: train_json = json.load(f)["utts"] with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 # make minibatch list (variable length) train = make_batchset( train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, mt=True, iaxis=1, oaxis=0, ) valid = make_batchset( valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, mt=True, iaxis=1, oaxis=0, ) load_tr = LoadInputsAndTargets(mode="mt", load_output=True) load_cv = LoadInputsAndTargets(mode="mt", load_output=True) # hack to make batchsize argument as 1 # actual bathsize is included in a list # default collate function converts numpy array to pytorch tensor # we used an empty collate function instead which returns list train_iter = ChainerDataLoader( dataset=TransformDataset(train, lambda data: converter([load_tr(data)])), batch_size=1, num_workers=args.n_iter_processes, shuffle=not use_sortagrad, collate_fn=lambda x: x[0], ) valid_iter = ChainerDataLoader( dataset=TransformDataset(valid, lambda data: converter([load_cv(data)])), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=args.n_iter_processes, ) # Set up a trainer updater = CustomUpdater( model, args.grad_clip, {"main": train_iter}, optimizer, device, args.ngpu, False, args.accum_grad, use_apex=use_apex, ) trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir) if use_sortagrad: trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"), ) # Resume from a snapshot if args.resume: logging.info("resumed from %s" % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch if args.save_interval_iters > 0: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu)) # Save attention weight each epoch if args.num_save_attention > 0: # NOTE: sort it by output lengths data = sorted( list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]["output"][0]["shape"][0]), reverse=True, ) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class( att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device, ikey="output", iaxis=1, ) trainer.extend(att_reporter, trigger=(1, "epoch")) else: att_reporter = None # Make a plot for training and validation values trainer.extend( extensions.PlotReport(["main/loss", "validation/main/loss"], "epoch", file_name="loss.png")) trainer.extend( extensions.PlotReport(["main/acc", "validation/main/acc"], "epoch", file_name="acc.png")) trainer.extend( extensions.PlotReport(["main/ppl", "validation/main/ppl"], "epoch", file_name="ppl.png")) trainer.extend( extensions.PlotReport(["main/bleu", "validation/main/bleu"], "epoch", file_name="bleu.png")) # Save best models trainer.extend( snapshot_object(model, "model.loss.best"), trigger=training.triggers.MinValueTrigger("validation/main/loss"), ) trainer.extend( snapshot_object(model, "model.acc.best"), trigger=training.triggers.MaxValueTrigger("validation/main/acc"), ) # save snapshot which contains model and optimizer states if args.save_interval_iters > 0: trainer.extend( torch_snapshot(filename="snapshot.iter.{.updater.iteration}"), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend(torch_snapshot(), trigger=(1, "epoch")) # epsilon decay in the optimizer if args.opt == "adadelta": if args.criterion == "acc": trainer.extend( restore_snapshot(model, args.outdir + "/model.acc.best", load_fn=torch_load), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) elif args.criterion == "loss": trainer.extend( restore_snapshot(model, args.outdir + "/model.loss.best", load_fn=torch_load), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) elif args.opt == "adam": if args.criterion == "acc": trainer.extend( restore_snapshot(model, args.outdir + "/model.acc.best", load_fn=torch_load), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) trainer.extend( adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) elif args.criterion == "loss": trainer.extend( restore_snapshot(model, args.outdir + "/model.loss.best", load_fn=torch_load), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) trainer.extend( adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) # Write a log of evaluation statistics for each epoch trainer.extend( extensions.LogReport(trigger=(args.report_interval_iters, "iteration"))) report_keys = [ "epoch", "iteration", "main/loss", "validation/main/loss", "main/acc", "validation/main/acc", "main/ppl", "validation/main/ppl", "elapsed_time", ] if args.opt == "adadelta": trainer.extend( extensions.observe_value( "eps", lambda trainer: trainer.updater.get_optimizer("main"). param_groups[0]["eps"], ), trigger=(args.report_interval_iters, "iteration"), ) report_keys.append("eps") elif args.opt in ["adam", "noam"]: trainer.extend( extensions.observe_value( "lr", lambda trainer: trainer.updater.get_optimizer("main"). param_groups[0]["lr"], ), trigger=(args.report_interval_iters, "iteration"), ) report_keys.append("lr") if args.report_bleu: report_keys.append("main/bleu") report_keys.append("validation/main/bleu") trainer.extend( extensions.PrintReport(report_keys), trigger=(args.report_interval_iters, "iteration"), ) trainer.extend( extensions.ProgressBar(update_interval=args.report_interval_iters)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": from torch.utils.tensorboard import SummaryWriter trainer.extend( TensorboardLogger(SummaryWriter(args.tensorboard_dir), att_reporter), trigger=(args.report_interval_iters, "iteration"), ) # Run the training trainer.run() check_early_stop(trainer, args.epochs)
def train(args): """Train with the given args :param Namespace args: The program arguments """ set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get input and output dimension info with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]['input'][0]['shape'][1]) odim = int(valid_json[utts[0]]['output'][0]['shape'][1]) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # specify attention, CTC, hybrid mode if args.mtlalpha == 1.0: mtl_mode = 'ctc' logging.info('Pure CTC mode') elif args.mtlalpha == 0.0: mtl_mode = 'att' logging.info('Pure attention mode') else: mtl_mode = 'mtl' logging.info('Multitask learning mode') # specify model architecture model = E2E(idim, odim, args) subsampling_factor = model.subsample[0] if args.rnnlm is not None: rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf) rnnlm = lm_pytorch.ClassifierWithState( lm_pytorch.RNNLM( len(args.char_list), rnnlm_args.layer, rnnlm_args.unit)) torch.load(args.rnnlm, rnnlm) model.rnnlm = rnnlm # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.json' with open(model_conf, 'wb') as f: logging.info('writing a model config file to ' + model_conf) f.write(json.dumps((idim, odim, vars(args)), indent=4, sort_keys=True).encode('utf_8')) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu))) logging.info('batch size is automatically increased (%d -> %d)' % ( args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta( model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters(), weight_decay=args.weight_decay) # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # Setup a converter converter = CustomConverter(subsampling_factor=subsampling_factor, preprocess_conf=args.preprocess_conf) # read json data with open(args.train_json, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] # make minibatch list (variable length) train = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1) valid = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1) # hack to make batchsize argument as 1 # actual bathsize is included in a list if args.n_iter_processes > 0: train_iter = chainer.iterators.MultiprocessIterator( TransformDataset(train, converter.transform), batch_size=1, n_processes=args.n_iter_processes, n_prefetch=8, maxtasksperchild=20) valid_iter = chainer.iterators.MultiprocessIterator( TransformDataset(valid, converter.transform), batch_size=1, repeat=False, shuffle=False, n_processes=args.n_iter_processes, n_prefetch=8, maxtasksperchild=20) else: train_iter = chainer.iterators.SerialIterator( TransformDataset(train, converter.transform), batch_size=1) valid_iter = chainer.iterators.SerialIterator( TransformDataset(valid, converter.transform), batch_size=1, repeat=False, shuffle=False) # Set up a trainer updater = CustomUpdater( model, args.grad_clip, train_iter, optimizer, converter, device, args.ngpu) trainer = training.Trainer( updater, (args.epochs, 'epoch'), out=args.outdir) # Resume from a snapshot if args.resume: logging.info('resumed from %s' % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch trainer.extend(CustomEvaluator(model, valid_iter, reporter, converter, device)) # Save attention weight each epoch if args.num_save_attention > 0 and args.mtlalpha != 1.0: data = sorted(list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]['input'][0]['shape'][1]), reverse=True) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions else: att_vis_fn = model.calculate_all_attentions att_reporter = PlotAttentionReport( att_vis_fn, data, args.outdir + "/att_ws", converter=converter, device=device) trainer.extend(att_reporter, trigger=(1, 'epoch')) else: att_reporter = None # Make a plot for training and validation values trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss', 'main/loss_ctc', 'validation/main/loss_ctc', 'main/loss_att', 'validation/main/loss_att'], 'epoch', file_name='loss.png')) trainer.extend(extensions.PlotReport(['main/acc', 'validation/main/acc'], 'epoch', file_name='acc.png')) # Save best models trainer.extend(extensions.snapshot_object(model, 'model.loss.best', savefun=torch_save), trigger=training.triggers.MinValueTrigger('validation/main/loss')) if mtl_mode is not 'ctc': trainer.extend(extensions.snapshot_object(model, 'model.acc.best', savefun=torch_save), trigger=training.triggers.MaxValueTrigger('validation/main/acc')) # save snapshot which contains model and optimizer states trainer.extend(torch_snapshot(), trigger=(1, 'epoch')) # epsilon decay in the optimizer if args.opt == 'adadelta': if args.criterion == 'acc' and mtl_mode is not 'ctc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=(REPORT_INTERVAL, 'iteration'))) report_keys = ['epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att', 'validation/main/loss', 'validation/main/loss_ctc', 'validation/main/loss_att', 'main/acc', 'validation/main/acc', 'elapsed_time'] if args.opt == 'adadelta': trainer.extend(extensions.observe_value( 'eps', lambda trainer: trainer.updater.get_optimizer('main').param_groups[0]["eps"]), trigger=(REPORT_INTERVAL, 'iteration')) report_keys.append('eps') if args.report_cer: report_keys.append('validation/main/cer') if args.report_wer: report_keys.append('validation/main/wer') trainer.extend(extensions.PrintReport( report_keys), trigger=(REPORT_INTERVAL, 'iteration')) trainer.extend(extensions.ProgressBar(update_interval=REPORT_INTERVAL)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": writer = SummaryWriter(args.tensorboard_dir) trainer.extend(TensorboardLogger(writer, att_reporter)) # Run the training trainer.run() check_early_stop(trainer, args.epochs)
def train(args): """Train with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get input and output dimension info with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]['input'][0]['shape'][-1]) odim = int(valid_json[utts[0]]['output'][0]['shape'][-1]) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # specify attention, CTC, hybrid mode if args.mtlalpha == 1.0: mtl_mode = 'ctc' logging.info('Pure CTC mode') elif args.mtlalpha == 0.0: mtl_mode = 'att' logging.info('Pure attention mode') else: mtl_mode = 'mtl' logging.info('Multitask learning mode') # specify model architecture model = E2E(idim, odim, args) subsampling_factor = model.subsample[0] if args.rnnlm is not None: rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf) rnnlm = lm_pytorch.ClassifierWithState( lm_pytorch.RNNLM( len(args.char_list), rnnlm_args.layer, rnnlm_args.unit, getattr(rnnlm_args, "embed_unit", None), # for backward compatibility )) torch.load(args.rnnlm, rnnlm) model.rnnlm = rnnlm # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.json' with open(model_conf, 'wb') as f: logging.info('writing a model config file to ' + model_conf) f.write( json.dumps((idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: if args.batch_size != 0: logging.warning( 'batch size is automatically increased (%d -> %d)' % (args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") if args.train_dtype in ("float16", "float32", "float64"): dtype = getattr(torch, args.train_dtype) else: dtype = torch.float32 model = model.to(device=device, dtype=dtype) # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta(model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters(), weight_decay=args.weight_decay) elif args.opt == 'noam': # 自定义更新lr from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt(model, args.adim, args.transformer_warmup_steps, args.transformer_lr) else: raise NotImplementedError("unknown optimizer: " + args.opt) # setup apex.amp if args.train_dtype in ("O0", "O1", "O2", "O3"): try: from apex import amp except ImportError as e: logging.error( f"You need to install apex for --train-dtype {args.train_dtype}. " "See https://github.com/NVIDIA/apex#linux") raise e if args.opt == 'noam': model, optimizer.optimizer = amp.initialize( model, optimizer.optimizer, opt_level=args.train_dtype) else: model, optimizer = amp.initialize(model, optimizer, opt_level=args.train_dtype) use_apex = True else: use_apex = False # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # Setup a converter converter = CustomConverter(subsampling_factor=subsampling_factor, dtype=dtype) # read json data with open(args.train_json, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 # make minibatch list (variable length) train = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=-1) valid = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=-1) load_tr = LoadInputsAndTargets( mode='asr', load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={'train': True} # Switch the mode of preprocessing ) load_cv = LoadInputsAndTargets( mode='asr', load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={'train': False} # Switch the mode of preprocessing ) # hack to make batchsize argument as 1 # actual bathsize is included in a list # default collate function converts numpy array to pytorch tensor # we used an empty collate function instead which returns list train_iter = { 'main': ChainerDataLoader(dataset=TransformDataset( train, lambda data: converter([load_tr(data)])), batch_size=1, num_workers=args.n_iter_processes, shuffle=True, collate_fn=lambda x: x[0]) } valid_iter = { 'main': ChainerDataLoader(dataset=TransformDataset( valid, lambda data: converter([load_cv(data)])), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=args.n_iter_processes) } # Set up a trainer updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer, device, args.ngpu, args.grad_noise, args.accum_grad, use_apex=use_apex) trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.outdir) if use_sortagrad: trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, 'epoch')) # Resume from a snapshot if args.resume: logging.info('resumed from %s' % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch trainer.extend( CustomEvaluator(model, valid_iter, reporter, device, args.ngpu)) # Save attention weight each epoch if args.num_save_attention > 0 and args.mtlalpha != 1.0: data = sorted(list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]['input'][0]['shape'][1]), reverse=True) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class(att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device) trainer.extend(att_reporter, trigger=(1, 'epoch')) else: att_reporter = None # Make a plot for training and validation values trainer.extend( extensions.PlotReport([ 'main/loss', 'validation/main/loss', 'main/loss_ctc', 'validation/main/loss_ctc', 'main/loss_att', 'validation/main/loss_att' ], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport(['main/acc', 'validation/main/acc'], 'epoch', file_name='acc.png')) trainer.extend( extensions.PlotReport(['main/cer_ctc', 'validation/main/cer_ctc'], 'epoch', file_name='cer.png')) # Save best models trainer.extend( snapshot_object(model, 'model.loss.best'), trigger=training.triggers.MinValueTrigger('validation/main/loss')) if mtl_mode != 'ctc': trainer.extend( snapshot_object(model, 'model.acc.best'), trigger=training.triggers.MaxValueTrigger('validation/main/acc')) # save snapshot which contains model and optimizer states trainer.extend(torch_snapshot(), trigger=(1, 'epoch')) # epsilon decay in the optimizer if args.opt == 'adadelta': if args.criterion == 'acc' and mtl_mode != 'ctc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) # Write a log of evaluation statistics for each epoch trainer.extend( extensions.LogReport(trigger=(args.report_interval_iters, 'iteration'))) report_keys = [ 'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att', 'validation/main/loss', 'validation/main/loss_ctc', 'validation/main/loss_att', 'main/acc', 'validation/main/acc', 'main/cer_ctc', 'validation/main/cer_ctc', 'elapsed_time' ] if args.opt == 'adadelta': trainer.extend(extensions.observe_value( 'eps', lambda trainer: trainer.updater.get_optimizer('main'). param_groups[0]["eps"]), trigger=(args.report_interval_iters, 'iteration')) report_keys.append('eps') if args.report_cer: report_keys.append('validation/main/cer') if args.report_wer: report_keys.append('validation/main/wer') trainer.extend(extensions.PrintReport(report_keys), trigger=(args.report_interval_iters, 'iteration')) trainer.extend( extensions.ProgressBar(update_interval=args.report_interval_iters)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": trainer.extend(TensorboardLogger(SummaryWriter(args.tensorboard_dir), att_reporter), trigger=(args.report_interval_iters, "iteration")) # Run the training trainer.run() check_early_stop(trainer, args.epochs)
def train(args): """Train with the given args :param Namespace args: The program arguments """ set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get input and output dimension info with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]['output'][1]['shape'][1]) odim = int(valid_json[utts[0]]['output'][0]['shape'][1]) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # specify model architecture model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) assert isinstance(model, MTInterface) if args.rnnlm is not None: rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf) rnnlm = lm_pytorch.ClassifierWithState( lm_pytorch.RNNLM(len(args.char_list), rnnlm_args.layer, rnnlm_args.unit)) torch.load(args.rnnlm, rnnlm) model.rnnlm = rnnlm # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.json' with open(model_conf, 'wb') as f: logging.info('writing a model config file to ' + model_conf) f.write( json.dumps((idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.ngpu))) logging.info('batch size is automatically increased (%d -> %d)' % (args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") model = model.to(device) # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta(model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters(), weight_decay=args.weight_decay) elif args.opt == 'noam': from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt(model, args.adim, args.transformer_warmup_steps, args.transformer_lr) else: raise NotImplementedError("unknown optimizer: " + args.opt) # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # Setup a converter converter = CustomConverter(idim=idim) # read json data with open(args.train_json, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 # make minibatch list (variable length) train = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, mt=True) valid = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, mt=True) load_tr = LoadInputsAndTargets( mode='mt', load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={'train': True} # Switch the mode of preprocessing ) load_cv = LoadInputsAndTargets( mode='mt', load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={'train': False} # Switch the mode of preprocessing ) # hack to make batchsize argument as 1 # actual bathsize is included in a list if args.n_iter_processes > 0: train_iter = ToggleableShufflingMultiprocessIterator( TransformDataset(train, load_tr), batch_size=1, n_processes=args.n_iter_processes, n_prefetch=8, maxtasksperchild=20, shuffle=not use_sortagrad) valid_iter = ToggleableShufflingMultiprocessIterator( TransformDataset(valid, load_cv), batch_size=1, repeat=False, shuffle=False, n_processes=args.n_iter_processes, n_prefetch=8, maxtasksperchild=20) else: train_iter = ToggleableShufflingSerialIterator( TransformDataset(train, load_tr), batch_size=1, shuffle=not use_sortagrad) valid_iter = ToggleableShufflingSerialIterator(TransformDataset( valid, load_cv), batch_size=1, repeat=False, shuffle=False) # Set up a trainer updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer, converter, device, args.ngpu, args.accum_grad) trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.outdir) if use_sortagrad: trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, 'epoch')) # Resume from a snapshot if args.resume: logging.info('resumed from %s' % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch trainer.extend( CustomEvaluator(model, valid_iter, reporter, converter, device)) # Save attention weight each epoch if args.num_save_attention > 0: # sort it by output lengths data = sorted(list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]['output'][0]['shape'][0]), reverse=True) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class(att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device, ikey="output", iaxis=1) trainer.extend(att_reporter, trigger=(1, 'epoch')) else: att_reporter = None # Make a plot for training and validation values trainer.extend( extensions.PlotReport([ 'main/loss', 'validation/main/loss', 'main/loss_att', 'validation/main/loss_att' ], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport(['main/acc', 'validation/main/acc'], 'epoch', file_name='acc.png')) trainer.extend( extensions.PlotReport(['main/ppl', 'validation/main/ppl'], 'epoch', file_name='ppl.png')) # Save best models trainer.extend( snapshot_object(model, 'model.loss.best'), trigger=training.triggers.MinValueTrigger('validation/main/loss')) trainer.extend( snapshot_object(model, 'model.acc.best'), trigger=training.triggers.MaxValueTrigger('validation/main/acc')) # save snapshot which contains model and optimizer states trainer.extend(torch_snapshot(), trigger=(1, 'epoch')) # epsilon decay in the optimizer if args.opt == 'adadelta': if args.criterion == 'acc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=(REPORT_INTERVAL, 'iteration'))) report_keys = [ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/acc', 'validation/main/acc', 'main/ppl', 'validation/main/ppl', 'elapsed_time' ] if args.opt == 'adadelta': trainer.extend(extensions.observe_value( 'eps', lambda trainer: trainer.updater.get_optimizer('main'). param_groups[0]["eps"]), trigger=(REPORT_INTERVAL, 'iteration')) report_keys.append('eps') trainer.extend(extensions.PrintReport(report_keys), trigger=(REPORT_INTERVAL, 'iteration')) trainer.extend(extensions.ProgressBar(update_interval=REPORT_INTERVAL)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": writer = SummaryWriter(args.tensorboard_dir) trainer.extend(TensorboardLogger(writer, att_reporter), trigger=(REPORT_INTERVAL, 'iteration')) # Run the training trainer.run() check_early_stop(trainer, args.epochs)
def train(args): """Train with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get paths to data lang_pairs = sorted(args.lang_pairs.split(',')) args.one_to_many = True if len(lang_pairs) > 1 else False tgt_langs = sorted([p.split('-')[-1] for p in lang_pairs]) src_lang = lang_pairs[0].split('-')[0] if args.one_to_many: train_jpaths = [ os.path.join(args.train_json, fname) for fname in sorted(os.listdir(args.train_json)) if fname.endswith('.json') ] valid_jpaths = [ os.path.join(args.valid_json, fname) for fname in sorted(os.listdir(args.valid_json)) if fname.endswith('.json') ] all_langs = list( sorted(set([l for p in lang_pairs for l in p.split('-')]))) args.langs_dict = {} offset = 2 # for <blank> and <unk> for i, lang in enumerate(all_langs): args.langs_dict[f'<2{lang}>'] = offset + i logging.info(f'| train_jpaths: {train_jpaths}') logging.info(f'| valid_jpaths: {valid_jpaths}') logging.info(f'| lang_pairs : {lang_pairs}') logging.info(f'| langs_dict : {args.langs_dict}') else: train_jpaths = [args.train_json] valid_jpaths = [args.valid_json] args.langs_dict = None # get input and output dimension info idim = 0 odim = 0 for i, jpath in enumerate(valid_jpaths): with open(jpath, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) idim_tmp = int(valid_json[utts[0]]['input'][0]['shape'][-1]) odim_tmp = int(valid_json[utts[0]]['output'][0]['shape'][-1]) logging.info('| pair {}: idim={}, odim={}'.format( lang_pairs[i], idim_tmp, odim_tmp)) if idim == 0: idim = idim_tmp else: assert idim == idim_tmp if odim < odim_tmp: odim = odim_tmp logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # Initialize with pre-trained ASR encoder and MT decoder if args.enc_init is not None or args.dec_init is not None: logging.info('Loading pretrained ASR encoder and/or MT decoder ...') model = load_trained_modules(idim, odim, args, interface=STInterface) logging.info(f'*** Model *** \n {model}') else: model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) logging.info(f'*** Model *** \n {model}') assert isinstance(model, STInterface) logging.info( f'| Number of model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}' ) subsampling_factor = model.subsample[0] logging.info(f'subsampling_factor={subsampling_factor}') if args.rnnlm is not None: rnnlm_args = get_model_conf(args.rnnlm, args.rnnlm_conf) rnnlm = lm_pytorch.ClassifierWithState( lm_pytorch.RNNLM( len(args.char_list), rnnlm_args.layer, rnnlm_args.unit, getattr(rnnlm_args, "embed_unit", None), # for backward compatibility )) torch_load(args.rnnlm, rnnlm) model.rnnlm = rnnlm # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.json' with open(model_conf, 'wb') as f: logging.info('writing a model config file to ' + model_conf) f.write( json.dumps((idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True).encode('utf_8')) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: if args.batch_size != 0: logging.warning( 'batch size is automatically increased (%d -> %d)' % (args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") if args.train_dtype in ("float16", "float32", "float64"): dtype = getattr(torch, args.train_dtype) else: dtype = torch.float32 model = model.to(device=device, dtype=dtype) # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta(model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) elif args.opt == 'noam': from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt(model, args.adim, args.transformer_warmup_steps, args.transformer_lr) else: raise NotImplementedError("unknown optimizer: " + args.opt) # setup apex.amp if args.train_dtype in ("O0", "O1", "O2", "O3"): try: from apex import amp except ImportError as e: logging.error( f"You need to install apex for --train-dtype {args.train_dtype}. " "See https://github.com/NVIDIA/apex#linux") raise e if args.opt == 'noam': model, optimizer.optimizer = amp.initialize( model, optimizer.optimizer, opt_level=args.train_dtype) else: model, optimizer = amp.initialize(model, optimizer, opt_level=args.train_dtype) use_apex = True else: use_apex = False # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 logging.info(f'use_sortagrad: {use_sortagrad}') # read json data num_langs = len(tgt_langs) train_all_pairs = [None] * num_langs valid_all_pairs = [None] * num_langs # check_data = {} batch_size = args.batch_size // num_langs if num_langs > 1 else args.batch_size for i, jpath in enumerate(train_jpaths): with open(jpath, 'rb') as f: train_json = json.load(f)['utts'] train_all_pairs[i] = make_batchset( train_json, batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout) # check_data[lang_pairs[i]] = list(train_json.keys()) for i, jpath in enumerate(valid_jpaths): with open(jpath, 'rb') as f: valid_json = json.load(f)['utts'] valid_all_pairs[i] = make_batchset( valid_json, batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout) # check_data[lang_pairs[i]] = list(valid_json.keys()) # print(f'len(train_all_pairs) = {len(train_all_pairs)}') # print(f'len(valid_all_pairs) = {len(valid_all_pairs)}') # for i, batch_langs in enumerate(train_all_pairs): # print(f'batch for lang {lang_pairs[i]}') # for batch_lang in batch_langs: # print(f'len(batch_lang) = {len(batch_lang)}') # print('-'*5) if num_langs > 1: cycle_train = [cycle(x) for x in train_all_pairs] cycle_valid = [cycle(x) for x in valid_all_pairs] num_batches_train = max(len(i) for i in train_all_pairs) num_batches_valid = max(len(i) for i in valid_all_pairs) train = [None] * num_batches_train valid = [None] * num_batches_valid for i, s in enumerate(zip(*cycle_train)): x = [] for y in s: x.extend(y) train[i] = x if i >= num_batches_train - 1: break for i, s in enumerate(zip(*cycle_valid)): x = [] for y in s: x.extend(y) valid[i] = x if i >= num_batches_valid - 1: break else: train = train_all_pairs[0] valid = valid_all_pairs[0] # print(f'num_batches_train = {num_batches_train}') # print(f'num_batches_valid = {num_batches_valid}') # print(f'len(train) = {len(train)}') # print(f'len(valid) = {len(valid)}') # print('*** Checking results of make_batchset() ***') # for i, batch in enumerate(train): # # if i == 0: # # print(batch) # ids = [sample[0] for sample in batch] # langs = [sample[1]['lang'] for sample in batch] # pairs = ['en-'+l for l in langs] # for i in range(len(ids)): # r = ids[i] in list(check_data[pairs[i]]) # print(f'ids[i]={ids[i]} in {check_data[pairs[i]]}: {r}') # print('-') # if r: # check_data[pairs[i]].remove(ids[i]) # print(f'len(batch) = {len(batch)}') # print(f'langs in batch: {langs}') # print('-'*5) # # if i > 5: # # break # print('*** Samples that are not used yet ***') # for k, v in check_data.items(): # print(k, v) # print('-'*5) # print('-'*20) load_tr = LoadInputsAndTargets(mode='asr', load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={'train': True}, langs_dict=args.langs_dict, src_lang=src_lang) load_cv = LoadInputsAndTargets(mode='asr', load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={'train': False}, langs_dict=args.langs_dict, src_lang=src_lang) # print('LoadInputsAndTargets()') # features, targets = load_cv(train[0]) # print(f'*** features: {features} ***') # for f in features: # # print(f) # print(f'len(f) = {len(f)}') # print('---') # print(f'*** targets : {targets} ***') # y1, y2 = zip(*targets) # # print(f'y1 = {y1}') # # print(f'y2 = {y2}') # for s in zip(y1, y2): # print(len(s[0][1]), len(s[1][1])) # print('-'*20) # Setup a converter converter = CustomConverter(subsampling_factor=subsampling_factor, dtype=dtype, asr_task=args.asr_weight > 0) # hack to make batchsize argument as 1 # actual bathsize is included in a list # default collate function converts numpy array to pytorch tensor # we used an empty collate function instead which returns list n_iter_processes = args.n_iter_processes if n_iter_processes < 0: n_iter_processes = multiprocessing.cpu_count() elif n_iter_processes > 0: n_iter_processes = min(n_iter_processes, multiprocessing.cpu_count()) print(f'n_iter_processes = {n_iter_processes}') train_iter = { 'main': ChainerDataLoader(dataset=TransformDataset( train, lambda data: converter([load_tr(data)])), batch_size=1, num_workers=n_iter_processes, shuffle=not use_sortagrad, collate_fn=lambda x: x[0], pin_memory=False) } valid_iter = { 'main': ChainerDataLoader(dataset=TransformDataset( valid, lambda data: converter([load_cv(data)])), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=n_iter_processes, pin_memory=False) } # xs_pad, ilens, ys_pad, ys_pad_asr = converter([load_cv(valid[0])]) # print('*** xs_pad ***') # # print(xs_pad) # print(xs_pad.size()) # print('*** ilens ***') # print(ilens) # print('*** ys_pad ***') # # print(ys_pad) # print(ys_pad.size()) # print('*** ys_pad_asr ***') # print(ys_pad_asr) # print('-'*20) # print(train_iter['main']) # i=0 # for item in train_iter['main']: # print(item) # print('-'*5) # if i > 8: # break # i += 1 # Set up a trainer updater = CustomUpdater(model, args.grad_clip, train_iter, optimizer, device, args.ngpu, args.grad_noise, args.accum_grad, use_apex=use_apex) # trainer = training.Trainer( # updater, (args.epochs, 'epoch'), out=args.outdir) time_limit_trigger = TimeLimitTrigger(args) trainer = training.Trainer(updater, time_limit_trigger, out=args.outdir) logging.info(f'updater: {updater}') logging.info(f'trainer: {trainer}') if use_sortagrad: logging.info(f'use_sortagrad ...') trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, 'epoch')) # Evaluate the model with the test dataset for each epoch if args.save_interval_iters > 0: trainer.extend(CustomEvaluator(model, valid_iter, reporter, device, args.ngpu), trigger=(args.save_interval_iters, 'iteration')) else: trainer.extend( CustomEvaluator(model, valid_iter, reporter, device, args.ngpu)) # Save attention weight each epoch if args.num_save_attention > 0: data = sorted(list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]['input'][0]['shape'][1]), reverse=True) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class(att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device) trainer.extend(att_reporter, trigger=(1, 'epoch')) else: att_reporter = None # Make a plot for training and validation values trainer.extend( extensions.PlotReport([ 'main/loss', 'validation/main/loss', 'main/loss_asr', 'validation/main/loss_asr', 'main/loss_st', 'validation/main/loss_st' ], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport([ 'main/acc', 'validation/main/acc', 'main/acc_asr', 'validation/main/acc_asr' ], 'epoch', file_name='acc.png')) trainer.extend( extensions.PlotReport(['main/bleu', 'validation/main/bleu'], 'epoch', file_name='bleu.png')) # Save best models if args.report_interval_iters > 0: trainer.extend(snapshot_object(model, 'model.loss.best'), trigger=MinValueTrigger( 'validation/main/loss', trigger=(args.report_interval_iters, 'iteration'), best_value=None)) trainer.extend(snapshot_object(model, 'model.acc.best'), trigger=MaxValueTrigger( 'validation/main/acc', trigger=(args.report_interval_iters, 'iteration'), best_value=None)) else: trainer.extend(snapshot_object(model, 'model.loss.best'), trigger=MinValueTrigger('validation/main/loss', best_value=None)) trainer.extend(snapshot_object(model, 'model.acc.best'), trigger=MaxValueTrigger('validation/main/acc', best_value=None)) # save snapshot which contains model and optimizer states if args.save_interval_iters > 0: trainer.extend( torch_snapshot(filename='snapshot.iter.{.updater.iteration}'), trigger=(args.save_interval_iters, 'iteration')) else: trainer.extend(torch_snapshot(), trigger=(1, 'epoch')) # epsilon decay in the optimizer if args.opt == 'adadelta': if args.criterion == 'acc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) elif args.opt == 'adam': if args.criterion == 'acc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) # Write a log of evaluation statistics for each epoch trainer.extend( extensions.LogReport(trigger=(args.report_interval_iters, 'iteration'))) report_keys = [ 'epoch', 'iteration', 'main/loss', 'main/loss_st', 'main/loss_asr', 'validation/main/loss', 'validation/main/loss_st', 'validation/main/loss_asr', 'main/acc', 'validation/main/acc' ] if args.asr_weight > 0: report_keys.append('main/acc_asr') report_keys.append('validation/main/acc_asr') report_keys += ['elapsed_time'] if args.opt == 'adadelta': trainer.extend(extensions.observe_value( 'eps', lambda trainer: trainer.updater.get_optimizer('main'). param_groups[0]["eps"]), trigger=(args.report_interval_iters, 'iteration')) report_keys.append('eps') elif args.opt in ['adam', 'noam']: trainer.extend(extensions.observe_value( 'lr', lambda trainer: trainer.updater.get_optimizer('main'). param_groups[0]["lr"]), trigger=(args.report_interval_iters, 'iteration')) report_keys.append('lr') if args.asr_weight > 0: if args.mtlalpha > 0: report_keys.append('main/cer_ctc') report_keys.append('validation/main/cer_ctc') if args.mtlalpha < 1: if args.report_cer: report_keys.append('validation/main/cer') if args.report_wer: report_keys.append('validation/main/wer') if args.report_bleu: report_keys.append('validation/main/bleu') trainer.extend(extensions.PrintReport(report_keys), trigger=(args.report_interval_iters, 'iteration')) trainer.extend( extensions.ProgressBar(update_interval=args.report_interval_iters)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": trainer.extend(TensorboardLogger(SummaryWriter(args.tensorboard_dir), att_reporter), trigger=(args.report_interval_iters, "iteration")) # Resume from a snapshot if args.resume: logging.info('resumed from %s' % args.resume) torch_resume(args.resume, trainer) # Run the training trainer.run() check_early_stop(trainer, args.epochs)